Agricultural and Biological Sciences Journal
Articles Information
Agricultural and Biological Sciences Journal, Vol.1, No.5, Oct. 2015, Pub. Date: Jul. 20, 2015
Antifungal Agents That Target Fungal Cell Wall Components: A Review
Pages: 206-216 Views: 2653 Downloads: 2687
[01] Babatunde I. Aderiye, Department of Microbiology, Ekiti State University, Ado-Ekiti, Nigeria.
[02] Olusola A. Oluwole, Department of Microbiology, Ekiti State University, Ado-Ekiti, Nigeria.
The fungal cell wall represents an exclusive structure that confers mechanical strength and osmotic resistance to fungal cells. The fungal cell wall’s structure contains mainly mannan, chitins and glucans in different proportions depending on the species. These structural components are unique to fungi and are currently being investigated as targets for novel antifungals. Currently, glucan component of the cell wall is the predominant target for therapeutic applications and developments of antifungals. Three classes of glucan inhibitors in application includes the lipopeptides e.g. echinocandins, the glycolipid papulacandins and the acid terpenoids including enfumafungin and ascosterosides. These agents are known 1,3-β-d glucan synthesis inhibitors and have been shown to possess antifungal activity in vitro as well as in vivo in many different animal models against yeasts e.g. Candida and filamentous fungi e.g. Aspergillus. The other targets, chitin and mannan are however being investigated given the limited applications of some of the glucan synthesis inhibitors. Chitin inhibitors available includes the related polyoxins and nikkomycins produced by Streptomyces while those that target the mannan component of the cell wall are Pradimicins and benanomicins by Actinomadura spp. Both groups have been found to possess broad spectrum activity against most medically important fungi e.g. Aspergillus fumigatus, Candida and Coccidioides immitis. The mechanism of action of these agents as well as their activity of against fungal pathogens is discussed.
Fungi, Glucan, Chitin, Mannan, Cell Wall, Echinocandins
[01] Abruzzo GK, Flattery AM, Gill CJ et al. 1997 Evaluation of the echinocandin antifungal MK-0991 (L- 743,872): efficacies in mouse models of disseminated aspergillosis, candidiasis and cryptococcosis. Antimicrob Agents Chemother. 41: 2333–8.
[02] Angustiniak H, Forsche E, Reichenbach H, Wray V, Grafe U, and Hofle G. Isolerung und Struktur Aufklarung von Ergokonin A und B, zwei neue antifungish Sterol-antibiotika aus Trichoderma konningii. Liebigs Ann Chem 1991; 361–366.
[03] Baguley, B.C., Römmele, G., Gruner, J. and Wehrli, W. Papulacandin B: an Inhibitor of Glucan Synthesis in Yeast Spheroplasts. European Journal of Biochemistry, 1979; 97: 345–351. doi: 10.1111/j.1432-1033.1979.tb13120.x
[04] Bartizal K, Gill CJ, Abruzzo GK, Flattery AM, Kong L, Scott PM, Smith JG, Leighton CE, Bouffard A, Dropinski JF, et al. In vitro preclinical evaluation studies with the echinocandin antifungal MK-0991 (L-743,872). Antimicrob Agents Chemother 1997; 41: 2326–2332.
[05] Beauvais A, Bruneau JM, Mol PC, et al. Glucan synthase complex of Aspergillus fumigatus. J. Bacteriol. 2001; 183:2273–9.
[06] Bernard M, Latge, JP. Aspergillus fumigatus cell wall: composition and biosynthesis. Med Mycol 2001; 39 (Suppl 1):9–17.
[07] Bills GF, Platas G, Pela ´ez F, Masurekar P. Reclassification of a pneumocandin-producing anamorph, Glarea lozoyensis gen. et sp. nov.,previously identified as Zalerion arboricola. Mycol. Res. 1999; 103: 179–92.
[08] Bouffard FA, Dropinski JF, Balkovec JM et al. L-743,872, a novel antifungal lipopeptide: synthesis and structure-activity relationships of new azasubstituted pneumocandins. [abstract F27]. In: Proceedings of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans. American Society for Microbiology: Washington, DC, 1996; 104.
[09] Bouffard FA, Zambias RA, Dropinski JF et al. Synthesis and antifungal activity of novel cationic pneumocandin Bo derivatives. J Med Chem 1994; 37: 222–5
[10] Bowman, S. M. and Free, S.J. "The structure and synthesis of the fungal cell wall". BioEssays 2006; 28 (8): 799–808.
[11] Cabello MA, Platas G, Collado J, Diez MT, Martin I, Vicente F, Meinz M, Onishi JC, Douglas C, Thompson J, Kurtz MB, Schwartz RE, Bills GF, Giacobbe RA, Abruzzo GK, Flattery AM, Kong L, Pelaez F. Arundifungin, a novel antifungal compound produced by fungi: biological activity and taxonomy of the producing organisms. Int Microbiol 2001; 4(2):93-102.
[12] Chaudhary PM, Tupe SG, Deshpande MV. Chitin synthase inhibitors as antifungal agents. Mini Rev Med Chem. 2013; 13(2):222-36.
[13] Choi, W.J., Santos, B., Duran, A. and Cabib, E.. Are yeast chitin synthases regulated at the transcriptional or the posttranslational level? Mol. Cell. Biol. 1994; 14: 7685-7694.
[14] Cooper, G.M. and Sunderland, M.A. The Cell: A Molecular Approach. 2nd edition. Sinauer Associates Inc., U.S. 2000; Pp 1.
[15] Debono, M. and Gordee, R.S. Antibiotics that inhibit cell wall development. Annu. Rev. Microbiol. 1994; 48: 471-497.
[16] Denning DW. Echinocandin antifungal drugs. Lancet 2003; 362:1142-51.
[17] Deresinski S, Stevens DA. Caspofungin. Clin Infect Dis 2003; 36: 1445 – 1457.
[18] Douglas, C.M., Antimicrobial Drug Resistance Volume 1 Lerner, S.A. Ouellette, M. and Sobel, J.D. (Eds.). Humana press, London 2009.
[19] Espinel-Ingroff A. Comparison of In vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L-743, 872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol. 1998; 36:2950–6
[20] Feldmesser M, Kress Y, Mednick A, et al. The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J Infect Dis. 2000; 182: 1791–5.
[21] Fontaine T, Simenel C, Dubreucq G, et al. Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 2000; 275:27594–607.
[22] Fung-Tomc, J.C. and Bonner, D.P. Recent developments in pradimicin-benanomicin and triazole antibiotics. Expert Opin Investig Drugs. 1997; 6(2):129-45.
[23] Fung-Tomc, J.C., Minassian, B., Huczko, E., Kolek, B., Bonner, D.P. and Kessler, R.E. In vitro antifungal and fungicidal spectra of a new pradimicin derivative, BMS- 181184. Antimicrob. Agents Chemother. 1995; 39: 295-300.
[24] Gaughran, J.P., Lai, M.H., Kirsch, D.R., and Silverman, S.J. Nikkomycin Z is a specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo. J. Bacteriol 1994; 176: 5857-5860.
[25] Georgopapadakou NH, Tkacz JS. The fungal cell wall as a drug target. Trends Microbiol. 1995; 3(3):98-104.
[26] Gomi, S. M. Sezaki, S. Kondo, T. Hara, H. Naganawa and T. Takeuchi: The structures of new antifungal antibiotics benanomicins A and B. J. Antibiotics 1988; 41: 1019-1028.
[27] Gonza´lez GM, Tijerina R, Najvar LK et al. Correlation between antifungal susceptibilities of Coccidioides immitis in vitro and antifungal treatment with caspofungin in a mouse model. Antimicrob. Agents Chemother. 2001; 45: 1854–9.
[28] Gooday, G.W. Inhibition of chitin metabolism. In: Biochemistry of cell walls and membranes in fungi. P.J. Kuhn, A.P.J. Trinci, M.J. Jung, M.W. Goosey and L.G. Copping (eds.). Springer-Verlag, Berlin. 1990c; 61-79.
[29] Gorman JA, Chang L-P, Clark J, Gustavson DR, Lam KS, Mamber SW, Pirnik D, Ricca C, Fernandes PB, and O’Sullivan J. Ascosteroside, a new antifungal agent from Ascotricha amphitricha. I. Taxonomy, fermentation and biological activities. J. Antibiot. 1996; 49:547–552.
[30] Gubbins, P.O. and Anaissie, E.J. Antifungal therapy In: Clinical Mycology. Elsevier Health Sciences 2009; Chapter 7.
[31] Hawser, H. Borgonovi, M. Markus, A. and Isert, D. Mulundocandin, an Echinocandin-like Lipopeptide Antifungal Agent: Biological Activities In Vitro. J. Antibiotics. 1999; 52(3): 305-310.
[32] Heasley BH, Pacofsky GJ, Mamai A, Liu H, Nelson K, Coti G, Peel MR, Balkovec JM, Greenlee ML, Liberator P, et al. Synthesis and biological evaluation of antifungal derivatives of enfumafungin as orally bioavailable inhibitors of β-1,3-glucan synthase. Bioorg. Med. Chem. Lett. 2012; 22: 6811–6816.
[33] Hector R.F., Zimmer B.L., Pappagianis D. Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob. Agents Chemother. 1990; 34:587–593.
[34] Hector RF. Compounds active against cell walls of medically important fungi. Clin. Microbiol. Rev 1993; 6:1,
[35] Hori M, Eguchi J, Kakiki K, Misato T: Studies on the mode of action of polyoxins. VI. Effect of polyoxin B on chitin synthesis in polyoxin-sensitive and resistant strains of Alternaria kikuchiana. J Antibiot 1974; 27(4):260-266.
[36] Hori M, Kakiki K, Suzuki S, Misato T: Studies on the mode of action of polyoxins. Part III. Relation of polyoxin structure to chitin synthetase inhibition. Agr Biol Chem 1971; 35(8):1280-1291.
[37] Isono K, Asahi K, Suzuki S: Studies on polyoxins, antifungal antibiotics. 13. The structure of polyoxins. J Am Chem Soc 1969; 91(26):7490-7505.
[38] Iwata, K., Yamamoto, Y., Yamaguchi, H. and Hiratani, T. In-vitro studies of aculeacin A, a new antifungal antibiotic. J. Antibiotics. 1982; 35: 203-209.
[39] Jiménez-Ortigosa, C. Paderu, P. Motyl, M.R. Perlina, D.S. Enfumafungin Derivative MK-3118 Shows Increased In Vitro Potency against Clinical Echinocandin-Resistant Candida Species and Aspergillus Species Isolates. Antimicrobial Agents and Chemotherapy 2014; 58(2): 1248 –1251.
[40] Kahn JN, Hsu M, Racine F, et al. Caspofungin susceptibility in Aspergillus and non-Aspergillusmolds: inhibition of glucan synthase and reduction of -D-1,3 glucan levels in culture. Antimicrob Agents Chemother. 2006; 50: 2214–16.
[41] Kaufman CA, Carver PL Update on echinocandin antifungals. Semin. Respir. Crit. Care Med. 2008; 28: 211–219.
[42] Keating G. and Figgitt D. Caspofungin: a review of its use in oesophageal candidiasis, invasive candidiasis and invasive aspergillosis. Drugs 2003; 63(20): 2235-63.
[43] Klis, F.M. De-Groot P. and Hellingwerf, K. Molecular organization of the cell wall of Candida albicans Medical Mycology 2001; 39(1): 1-8.
[44] Klis, F.M., Mol, P., Hellingwerf, K. and Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 2002; 26: 239–256.
[45] Kobayashi, M. Yoshimura, S. Kinoshita, T.; Hashimoto, M.; Hashimoto, S. Takase, S. Fujie, A. Hino, M. and Hori, Y. FR207944, an Antifungal Antibiotic from Chaetomium sp. No. 217 I. Taxonomy, Fermentation, and Biological Properties. Biosci. Biotechnol. Biochem. 2005; 69: 1029-1032.
[46] Kondo, S.; S. Gomi, D. Ikeda, M. Hamada, T. Takeuchi, H. Hoshino and J. Seki: Antifungal and antiviral activities of benanomicins and their analogues. J. Antibiotics 1991; 44: 1228-1236.
[47] Konno F, Sasaki T, Chiba N, Harimaya K, Kanda M, Mikawa T, and Sato Y. Novel antibiotic MK6059, process for the preparation of the same, and drug composition containing the same. WO9738005, 1997; 16 Oct.
[48] Krishnan S, Manavathu EK, Chandrasekar PH. A comparative study of fungicidal activities of voriconazole and amphotericin B against hyphae of Aspergillus fumigatus. J Antimicrob Chemother. 2005; 55: 914–20.
[49] Kurtz MB, Heath IB, Marrinan J, Dreikorn S, Onishi J, Douglas C. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-D-glucan synthase. Antimicrob Agents Chemother 1994; 38:1480.
[50] Lenardon, M.D., Munro, C.A and. Gow, N.A.R. Chitin synthesis and fungal pathogenesis Curr Opin Microbiol. 2010; 13(4): 416–423 doi: 10.1016/j.mib.2010.05.002.
[51] Li, J. Li, L. Feng, C. Chen, Y and Tan, H. Novel polyoxins generated by heterologously expressing polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes. Microbial Cell Factories 201; 11:135 doi:10.1186/1475-2859-11-135.
[52] Lyman, C.A. and Walsh, T.J. Systemically administered antifungal agents. Drugs. 1992; 44: 9-35.
[53] Maertens J, Raad I, Petrikkos G, et al. Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin. Infect. Dis. 2004; 39: 1563 – 1571.
[54] Maligie MA and Selitrennikoff CP. Cryptococcus neoformans resistance to echinocandins: (1,3) beta-glucan synthase activity is sensitive to echinocandins. Antimicrob Agents Chemother.2005; 49:2851–6.
[55] Mizoguchi, J.; Saito, T. Mizuno K. and Hayano, K. On the mode of action of anew antifungal antibiotic, aculeacin A: inhibition of cell wall synthesis in Saccharomyces cerevisiae. J. Antibiotics 1977; 30: 308-313.
[56] Mizuno, K., Yagi, A., Satoi, S., Takada, M., Hayashi, M., Asano, K. and Matsuda, T. Studies on aculeacin. I. Isolation and characterization of aculeacin A. J. Antibiotics. 1977; 30: 297- 302.
[57] Motyl MR, Tan C, Liberator P, Giacobbe R, Racine F, Hsu MJ, NielsenKahn, Bowman JJ, Douglas C, Hammond M, Balkovec JM, Greenlee ML, Meng D, Parker D, Peel M, Fan W, Mamai A, Hong J, Orr M, Ouvry G, Perrey D, Liu H, Jones M, Nelson K, Ogbu C, Lee S, Li K, Kirwan R, Noe A, Sligar J, Martensen P. Abstr. Intersci. Conf. Antimicrob. Agents Chemother. Boston, MA, abstr. 2010; F1-847.
[58] Mukhopadhyay T., Ganguli B. N., Fehlhaber H. W., Kogler H., Vertesy L. Mulundocandin, a new lipopeptide antibiotic. II. Structure elucidation. J. Antibiot. (Tokyo) 1987; 40:281–289.
[59] Munro, C.A., and Gow, N.A.R. Chitin biosynthesis as a target for antifungals. In Antifungal Agents: Discovery and Mode of Action. Dixon, G.K., Copping, L.G., and Hollomon, D.W. (eds). Oxford: Bios Scientific, 1995; 161- 171.
[60] Odabasi Z, Paetznick VL, Rodriguez JR, Chen E, Ostrosky-Zeichner L. In vitro activity of anidulafungin against selected clinically important mold isolates. Antimicrob Agents Chemother 2004; 48:1912-15.
[61] Ohyama T, Iwadate-Kurihara Y, Hosoya T, Ishikawa T, Miyakoshi S, Hamano K, Inukai M. F-10748 A1, A2, B1, B2, C1, C2, D1 and D2, novel papulacandins. J. Antibiot. (Tokyo), 2002; 55(8): 758–763.
[62] Oki, T., M. Konishi, K. Tomatsu, K. Tomita, K. I. Saitoh, M. Tsunakawa, M. Nishio, T. Miyaki, and H. Kawaguchi. Pradimicin, a novel class of potent antifungal antibiotics. J. Antibiotics 1988; 41:1701-1704.
[63] Oki, T., Tenmyo, O., Hirano, M., Tomatsu, K. and Kamei, H. Pradimicins A, B and C: new antifungal antibiotics. J. Antibiot. 1990; 43: 763-770.
[64] Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L, et al. Discovery of novel antifungal (1,3)-β-d-glucan synthase inhibitors. Antimicrob Agents Chemother 2000; 44: 368–377.
[65] Ostrosky-Zeichner L, Rex JH, Pappas PG, et al. (Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother 2003; 47:3149.
[66] Peel M, Fan W, Mamai A, Hong J, Orr M, Ouvry G, Perrey D, Liu H, Jones M, Nelson K, Ogbu C, Lee S, Li K, Kirwan R, Noe A, Sligar J, Martensen P, Balkove J, Greenlee CM, Meng D, Parker D, Wildonger K, Liberator P, Abruzzo G, Flattery A, Galgoci A, Giacobbe R, Gill C, Hsu MJ, Misura A, Nielsen J, Powles M, Racine F, Dragovic J, Habulihaz B, Balkovec J. 2010. Enfumafungin derivatives: orally active glucan synthase inhibitors, abstr F1-845. Abstr. Intersci. Conf. Antimicrob. Agents Chemother. Boston, MA.
[67] Peláez F, Cabello A, Platas G, Díez MT, González A, Basilio A, Martín I, Vincente F, Bills GF, Giacobbe RA, Schwartz RE, Onishi JC, Meinz MS, Arbruzzo GK, Flattery AM, Kong L, Kurtz MB. The discovery of enfumafungin, a novel antifungal compound produced by endophytic Hormonema species, biological activity, and taxonomy of the producing organisms. Systematic and Applied Microbiology 2000; 23: 333–343.
[68] Perez, P., I. Garcia-Acha, and A. Duran, Effect of papulacandin B on the cell wall and growth of Geotrichum lactis. J. Gen. Microbiol., 1983; 129 (Pt 2): 245–250
[69] Perfect J.R., Wright K.A., Hector R.F. Synergistic interaction of nikkomycin and cilofungin against diverse fungi. In: Recent progress in antifungal therapy. Yamaguchi H. (eds) (Marcel Dekker, New York, N.Y), 1991; 369–379.
[70] Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M. Activity of MK-3118, a new oral glucan synthase inhibitor, tested against Candida spp. by two international methods (CLSI and EUCAST). J. Antimicrob. Chemother. 2013a; 68: 858–863.
[71] Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M. In vitro activity of a new oral glucan synthase inhibitor (MK-3118) tested against Aspergillus spp. by CLSI and EUCAST broth microdilution methods. Antimicrob. Agents Chemother. 2013b; 57: 1065–1068.
[72] Pfaller MA, Messer SA, Mills K. et al. Evaluation of Etest method for determining caspofungin (MK-0991) susceptibilities of 726 clinical isolates of Candida sp. J. Clin. Microbiol. 2001; 39:4387.
[73] Philip A, Odabasi Z, Rodrigues JR, et al. Program and abstracts of the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington, DC: American Society for Microbiology; In vitro synergy testing of anidulafungin (ANID) with itraconazole (ITR) and voriconazole (VOR) against Aspergillus spp. and Fusarium spp [abstract M-988]; 2003; 452.
[74] Powles MA, Liberator P, Anderson J, et al. Efficacy of MK-991 (L- 743,872), a semisynthetic pneumocandin, in murine models of Pneumocystis carinii. Antimicrob Agents Chemother 1998; 42:1985–9.
[75] Reese, A.J. and T.L. Doering, Cell wall alpha-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol Microbiol, 2003; 50(4): 1401–1409.
[76] Roy K., Mukhopadhyay T., Reddy C.G.S., Desikan K.R., Ganguli B.N. Mulundocandin, a new lipopeptide antibiotic. I. Taxonomy, fermentation, isolation and characterization. J. Antibiot. (Tokyo) 1987; 40:275–280.
[77] Satoi, S., Yagi, A., Asano, K., Mizuno, K. and Watanabe, T. Studies on aculeacin II. Isolation and characterization of aculeacins B, C, D, E, F and G. J. Antibiotics. 1977; 30: 303-307.
[78] Schwartz, R. Cell wall active antifungal agents. Expert Opin. Therapeutic Patents 2001; 11:1761-1772.
[79] Schwartz RE, Sesin DF, Joshua H et al. Pneumocandins from Zalerion arboricola. I Discovery and isolation. J. Antibiotics 1992; 45: 1853–66.
[80] Selitrennikoff, C.P. and Nakata, M. New cell wall targets for antifungal drugs. Curr Opin Investig Drugs. 2003; 4(2):200-205.
[81] Serrano MC, Valverde-Conde A, Chávez M, et al. In vitro activity of voriconazole, itraconazole, caspofungin, anidulafungin (VER002, LY303366) and amphotericin B against Aspergillus spp. Diagn. Microbiol. Infect. Dis. 2003; 45:131-5.
[82] Stone JA, Holland SD, Wickersham PJ, Sterrett A, Schwartz M, Bonfiglio C, Hesney M, Winchell GA, Deutsch PJ, Greenberg H, et al. Single- and multiple-dose pharmacokinetics of caspofungin in healthy men. Antimicrob Agents Chemother 2002; 46: 739–745.
[83] Sucher AJ, Chahine EB, Balcer HE. Echinocandins: the newest class of antifungals. Ann Pharmacother. 2009; 43:1647–1657.
[84] Takeuchi, T., Hara, T., Naganawa, H., Okada, M., Hamada, M., Umezawa, H., Gomi, S., Sezaki, M. and Kondo, S. New antifungal antibiotics, benanomicins A and B from an Actinomycete. J. Antibiot. 1988; 41: 807-811.
[85] Tariq, V.N. and Devlin, P.L. Sensitivity of fungi to nikkomycin Z. Fungal Gen. Biol. 1996; 20: 4-11.
[86] Tomita, K., Nishio, M., Saitoh, K., Yamamoto, H., Hoshino, Y., Ohkuma, H., Konishi, M., Miyaki, T. and Oki, T. Pradimicins A, B and C: new antifungal antibiotics. I. Taxonomy, production, isolation and physico-chemical properties. J. Antibiot. 1990; 43: 755-762
[87] Traxler, P., Gruner, J., Auden, J.A. Papulacandins, a new family of antibiotics with antifungal activity, I. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E. J. Antibiot. 1977; 30(4):289-96.
[88] Vazquez JA. and Sobel, JD. Anidulafungin: A Novel Echinocandin. Clin Infect Dis. 2006; 43 (2): 215-222. doi: 10.1086/505204.
[89] Vicente, M.F., Cabello, A., Platas, G., Basilio, A., Diez, M.T., Dreikorn, S., Giacobbe, R. A., Onishi, J. C., Meinz, M., Kurtz, M. B., Rosenbach, M., Thompson, J., Abruzzo, G., Flattery, A., Kong, L., Tsipouras, A., Wilson, K. E., and Pelaez, F., Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J. Appl. Microbiol., 2001; 91, 806–813.
[90] Wagner, C., Graninger W, Prester I.E, et al. The echinocandins: Comparison of their Pharmacokinetics, pharmacodynamics and clinical applications. Pharmacology 2006; 78: 161–177.
[91] Walker SS, Xu Y, Triantafyllou I, Waldman MF, Mendrick C, Brown N, Mann P, Chau A, Patel R, Bauman N, et al. Discovery of a novel class of orally active antifungal β-1,3-d-glucan synthase inhibitors. Antimicrob. Agents Chemother. 2011; 55: 5099–5106.
[92] Walsh, T.J. and Giri, N. Pradimicins: a novel class of broadspectrum antifungal compounds. Eur. J. Clin. Microbiol. Infect. Dis. 1997; 16: 93-97.
[93] Watanabe M, Gomi S, Tohyama H, Ohtsuka K, Shibahara S, Inouye S, Kobayashi H, Suzuki S, Kondo S, Takeuchi T, Yamaguchi H. Binding of benanomicin A to fungal cells in reference to its fungicidal action. J. Antibiot. 1996; 49(4):366-73.
[94] Yamaguchi, H. Hiratani, T. Iwata K. and Yamamoto Y. Studies on the mechanism of antifungal action of Aculeacin a. The Journal of Antibiotics 1982; 35(2): 210-219.
[95] Yang SW, Buevich A, Chan TM, Terracciano J, Chen G, Loebenberg D, Patel M, Boehm E, Gullo V, Pramanik B, Chu M. A new antifungal sterol sulfate, Sch 601324, from Chrysosporium sp. J Antibiot. 2003; 56(4): 419-22.
[96] Zaoutis TE, Jafri HS, Huang LM, et al. A prospective, multicenter study of caspofungin for the treatment of documented Candida or Aspergillus infections in pediatric patients. Pediatrics 2009; 123: 877 – 884.
[97] Zhanel GG, Karlowsky JA, Harding GAJ, et al. In vitro activity of a new semisynthetic echinocandin, LY-303366, against systemic isolates of Candida species, Cryptococcus neoformans, Blastomyces dermatitidis, and Aspergillus species. Antimicrob. Agents Chemother 1997; 41:863-5.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.