Agricultural and Biological Sciences Journal
Articles Information
Agricultural and Biological Sciences Journal, Vol.6, No.3, Sep. 2020, Pub. Date: Aug. 26, 2020
The Role of Plant Growth Regulators for Alleviates Salt-Induced Oxidative Stress in Two Lettuce Cultivars by Enhancing Physiological Studies
Pages: 158-175 Views: 1058 Downloads: 325
Authors
[01] Reem Ahmad Ali Basaba, Department of Biology, Faculty of Applied Science, Umm Al Qura University, Makkah Al Mukaramah, K.S.A.
[02] Hameda El Sayed Ahmed El Sayed, General Administration of Education Taif, Ministre of Education, K.S.A.
Abstract
This study aimed to explain the role of plant growth regulators-PGRs (AsA & SA -0.5mM) for reducing the effect of salinity stress on two lettuce cultivars (cv. Paris [cv. Paris Island Cos] & cv. Royal). The lettuce seeds for both cultivars (cv. Paris & cv. Royal) soaked in PGRs (AsA & SA -0.5 mM) for 12 hours in the dark at 4°C. Planted seeds in trays of cork contains 218 eye for 14 days, transplanted the seedlings plant to plastic containers each pot containing one plant was irrigated with using NaCl salinity concentrations (0.00, 50; 100; 150 mM) alternative with distilled water until harvest (84 days). The harvest (84 days) data explained that the antioxidant activity enzymes (catalase-CAT, ascorbate peroxidase-APX, glutathione reductase-GR & superoxide dismutase-SOD), proline (Pro) and in-organic nutrient mineral elements in shoots. The catalase enzyme activity (CAT) and Pro contents increased significantly in the present of AsA more than SA under NaCl salinity stress compared with control. While, the ascorbate peroxidase enzyme activity (APX), glutathione reductase enzyme activity (GR), superoxide dismutase enzymes activity (SOD) and the contents of N, P, K, Ca, Mn and B nutrient mineral elements increased with salinity concentrations especially with 50 mM NaCl concentration than control. Whereas, the role of AsA was more effective for both cultivars than SA under NaCl salinity concentrations compared with control. Also, the Mg, Na and Zn contents in shoot of both cultivars tended to increase with increasing NaCl salinity concentrations in the presence or absence of PGRs (AsA & SA) compared with control. The data provide strong support to the hypothesis that the role of exogenous AsA reduces the harmful effects of salinity and increases resistance both cultivars of lettuce plant to salinity stress.
Keywords
"Ascorbic Acid, Salicylic Acid, Lettuce, Lactuca sativa L., Antioxidant, Proline, Elements, Salinity, Catalase, Ascorbate Peroxidase "
References
[01] Koca, M.; Bor, M.; Ozdemir, F.; Turkan, I. (2007): The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany, Vol. 60: pp 344-351.
[02] Wahb-Allah, M. A. (2013): Responses of Some Bell-Pepper (Capsicum Annuum L.) Cultivars to Salt Stress Under Greenhouse Conditions. Journal of Agriculture and Environmental Sciences Dam. Univ. Egypt., Vol. 12 (1): pp1-20.
[03] Sadak, M. S.; Dawood, M. G. (2014): Role of ascorbic acid and α- tocopherol in alleviating salinity stress on flax plant (Linum usitatissimum L.). Journal of Stress Physiology & Biochemistry, Vol. 10 (1): pp 93-111.
[04] Kusvuran, S.; Kiran, S.; Ellialtioglu, S. S. (2016): Antioxidant Enzyme Activities and Abiotic Stress Tolerance Relationship in Vegetable Crops. In Abiotic and Biotic Stress in Plants–Recent Advances and Future Perspectives; IntechOpen: London, UK.
[05] Rengasamy, P. (2010): Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, Vol. 37: pp 613–620.
[06] Flowers, T. J.; Galal, H. K.; Bromham, L. (2010): Evolution of halophytes: Multiple origins of salt tolerance in land plants. Funct. Plant Biology, Vol. 37: pp 604–612.
[07] Hasanuzzaman, M.; Nahar, K.; Fujita, M. (2013): Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ecophysiology and Responses of plants under Salt Stress; Ahmad, P., Azooz, M. M., Prasad, M. N. V., Eds.; Springer, New York, NY, USA, pp. 25–87.
[08] Enespa; Prakash, J.; Chandra, P. (2020): Halophilic Microbes from Plant Growing Under the Hypersaline Habitats and Their Application for Plant Growth and Mitigation of Salt Stress. In: Yadav A., Singh J., Rastegari A., Yadav N. (eds) Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, Vol 25: pp317-349 Springer, Cham.
[09] Jouyban, Z. (2012): The effects of salt stress on plant growth. Technical Journal of Engineering and Applied Science, Vol. 2 (1): pp 7-10.
[10] Roussos, P.; Gasparatos, D.; Kyriakou, C.; Tsichli, K.; Tsantili, E.; Haidouti, C. (2013): Growth, nutrient status and biochemical changes in sour orange (Citrus aurantium L.) plants subjected to sodium chloride stress. Communications in Soil Science and Plant Analysis, Vol. 44: pp 805–816.
[11] Kamran, M.; Parveen, A.; Ahmar, S.; Malik, Z.; Hussain, S.; Chattha, M. S.; Saleem, M. H.; Adil, M.; Heidari, P.; Chen, J. (2020): An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. International Journal of Molecular Sciences, Vol. 21 (148); doi: 10.3390/ijms21010148.
[12] Khan, M. I. R.; Syeed, S.; Nazar R.; Anjum N. A. (2012a): An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. Phytohormones and Abiotic Stress Tolerance in Plants, eds Khan N. A., Nazar R., Iqbal N., Anjum N. A., editors. (Berlin: Springer), 277–300.
[13] Khan, M. I. R; Iqbal, N.; Masood, A.; Khan, N. A. (2012b): Variation in salt tolerance of wheat cultivars: Role of glycinebetaine and ethylene. Pedosphere., Vol. 22: pp 746-754.
[14] Asgher, M.; Khan M. I. R.; Anjum N. A.; Khan N. A. (2015): Minimizing toxicity of cadmium in plants–role of plant growth regulators. Protoplasma, Vol. 252: pp 399–413.
[15] Athar, H. R.; Khan, A.; Ashraf, M. (2008): Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany, Vol. 63: pp 224–231.
[16] Akram, N. A.; Shafiq, F.; Ashraf, M. (2017): Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance. Frontiers in Plant Science, Vol. 8 (613).
[17] Hancock, R. D.; Walker, P. G.; Pont, S. D. A.; Marquis, N.; Vivera, S.; Gordon, S. L.; Brennan, R. M.; Viola, R. (2007): L-ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the l-galactose pathway. Functional Plant Biology, Vol. 34: pp 1080–1091.
[18] Mazid, M.; Khan, T. A.; Khan, Z. H.; Quddusi, S.; Mohammad, F. (2011): Occurrence, biosynthesis and potentialities of ascorbic acid in plants. International Journal of Plant, Animal and Environmental Sciences, Vol. 1: pp 167–184.
[19] Gest, N.; Gautier, H.; Stevens, R. (2013): Ascorbate as seen through plant evolution: the rise of a successful molecule? Journal of Experimental Botany, Vol. 64: pp33–53.
[20] Suekawa, M.; Kondo, T.; Fujikawa, Y.; Esaka, M. (2017): Regulation of Ascorbic Acid Biosynthesis in Plants. In: Hossain M., Munné-Bosch S., Burritt D., Diaz-Vivancos P., Fujita M., Lorence A. (eds) Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer, Cham. pp 157-176.
[21] Bybordi, A. (2012): Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. Journal of Integrative Agriculture, Vol. 11: pp 1610–1620.
[22] Raza, S. H.; Shafiq, F.; Chaudhary, M.; Khan, I. (2013): Seed invigoration with water, ascorbic and salicylic acid stimulates development and biochemical characters of okra (Ablemoschus esculentus) under normal and saline conditions. International Journal of Agricultural and Biological, Vol. 15: pp 486–492.
[23] Agami, R. A. (2014): Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biology Plant, Vol. 58: pp 341–347.
[24] Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. (2004): Reactive oxygen gene network of plants. Trends in Plant Science, Vol. 9: pp 490-498.
[25] Van Doorn, W. G.; Ketsa, S. (2014): Cross reactivity between ascorbate peroxidase and phenol (guaiacol) peroxidase. Postharvest Biology and Technology, Vol. 95: pp 64–69.
[26] Metraux, J. P.; Raskin, I. (1993): Role of phenolics in plant disease resistance. In Biotechnology in Plant Disease Control, ed. I Chet, 11: pp191-209. New York: John Wiley & Sons
[27] Favre, H. A.; Powell, W. H. (2014): Nomenclature of Organic Chemistry IUPAC Recommendations and Preferred Names 2013 (IUPAC Blue Book). Royal Society of Chemistry, Cambridge, UK. P 64. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
[28] Shalmashi, A.; Eliassi, A. (2008): Solubility of Salicylic Acid in Water, Ethanol, Carbon Tetrachloride, Ethyl Acetate, and Xylene. Journal of Chemical and Engineering Data, Vol. 53 (1): pp 199–200.
[29] Fragnière, C.; Serrano, M.; Abou-Mansour, E.; Métraux, J. P.; Haridon, F. L. (2011): Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett. Vol. 585: pp1847–1852.
[30] Seyfferth, C.; Tsuda, K. (2014): Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Frontiers in Plant Science, Vol. 5: p 697.
[31] Alam, M. M.; Hasanuzzaman, M.; Nahar, K.; Fujita, M. (2013): Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by up-regulating the antioxidant defense and glyoxalase system. Australian Journal of Crop Science, Vol. 7: pp1053–1063.
[32] Yanik, F.; Aytürk, Ö.; Ḉetinbaş-Genç, A.; Vardar, F. (2018): Salicylic acid-induced germination, biochemical and developmental alterations in rye (Secale cereale L.). Acta Botanica Croatica, Vol. 77 (1): pp 45–50.
[33] Nazar, R.; Iqbal, N.; Syeed, S.; Khan, N. A. (2011): Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, Vol. 168: pp 807–815.
[34] Khan, M. I. R.; Iqbal, N.; Masood, A.; Per, T. S.; Khan, N. A. (2013): Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior, Vol. 8 (11): p 26374.
[35] Khan, M. I. R.; Asgher, M.; Khan, N. A. (2014): Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiate L.). Plant Physiology and Biochemistry, Vol. 80: pp 67–74.
[36] Miura, K.; Tada, Y. (2014): Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science. Plant Physiology, Vol. 5 (4): pp1-12.
[37] Muthulakshmi, S.; Lingakumar, K. (2017): Role of salicylic acid (SA) in plants -A review. International Journal of Applied Research, Vol. 3 (3): pp 33-37.
[38] Al-Whaibi, M. H.; Siddiqui, M. H.; Basalah, M. O. (2012): Salicylic acid and calcium-induced protection of wheat against salinity. Protoplasma, Vol. 249 (3): pp 769‐778.
[39] Akbulut, G. B.; Yigit, E.; Kaya, A.; Aktas, A. (2018): Effects of salicylic acid and organic selenium on wheat (Triticum aestivum L.) exposed to fenoxaproppethyl. Ecotoxicology and Environmental Safety, Vol. 148: pp 901-909.
[40] Khalil, N.; Fekry, M.; Bishr, M.; El-Zalabani, S.; Salama, O. (2018): Foliar spraying of salicylic acid induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris L. Plant Physiology and Biochemistry, Vol. 123: pp 65-74.
[41] Durazzo, A.; Azzini, E.; Lazzé, M. C.; Raguzzini, A.; Pizzala, R.; Maiani, G.; Maiani, G. (2014): Antioxidants in Italian Head Lettuce (Lactuca sativavar. capitata L.) Grown in Organic and Conventional Systems under Greenhouse Conditions. Journal of Food Biochemistry, Vol. 38 (1): pp 56-61.
[42] Llorach, R.; Martínez-Sánchez, A.; Tomás-Barberán, F. A.; Gil, M. I.; Ferreres, F. (2008): Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chemistry, Vol. 108 (3): pp 1028-1038.
[43] Guerrero, C.; Rojano, B. A. (2010): Estudio sobre el isoespintanol como alternativa en el control del pardeamiento enzimático en frutas tropicales. Ponencia presentada en: vii Seminario Internacional de Frutas Tropicales; Medellín, Colombia.
[44] Kim, M. J.; Moon, Y.; Tou, J. C.; Mou, B.; Waterland, N. L. (2016): Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, Vol. 49: pp 19-34.
[45] Khan, W.; Prithiviraj, B.; Smith, D. L. (2003): Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, Vol. 160 (5): pp 485-492.
[46] Esfandiari, E.; Shakiba, M. R.; Mahboob, S.; Alyari, H.; Toorchi, M. (2007): Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling, Journal of Food, Agriculture & Environment, Vol. 5: pp 149- 153.
[47] Beauchamp, C.; Fridovich, I. (1971): Superoxide Dimutas: Improved Assays and an Applicable to Acrylamide Gels. Analytical Biochemistry, Vol. 44: p 276.
[48] Aebi, H. (1984): Catalase in vitro Methods Enzymol. Vol. 105: pp. 121-6. PMID: 10.1016/s0076-6879 (84) 05016-3.
[49] Yoshimura, Y.; Sato, H.; Imamura, K.; Watanabe, Y. (2000): Properties of Horizontal and Vertical Inputs to Pyramidal Cells in the Superficial Layers of the Cat Visual Cortex. The Journal of Neuroscience, Vol. 20 (5): pp. 1931-1940.
[50] Sairam, R. K.; Rao, K. V.; Srivastava, G. C. (2002): Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, Vol. 163: pp 1037-1046.
[51] Gupta, A. S.; Webb, R. P.; Holaday, A. S.; Allen, R. D. (1993): Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiology, Vol. 103: pp 1067–1073.
[52] Bates, I. S.; Waldern, R. P.; Teare, I. D. (1973): Rapid determination of free proline for water stress studies. Plant and Soil, Vol. 39: pp 205-207.
[53] Richards, L. A. (1954): Diagnosis and Improvement of saline and alkali soils U. S. Dept. of Agriculture. Hand book No. 60.
[54] Johnson, C. M.; Ulrich, A. (1959): Analytical methods for use in plant analysis. U. S. Dept. Agriculture California University Agric. Inform. Bull, pp78.
[55] Allen, S.; Grimshay, H. M.; Parkinson, J. A.; Quarmby, C. (1974): Chmical Analysis of ecological materials Black well Scientific Publicalions, Osney. Oxford, Londen. Pp. 565.
[56] Kotz, S.; Balakrishnan, N.; Read, C. B.; Vidakovic, B. (2006): Encyclopedia of statistical sciences. 2nd ed. Hoboken, N. J.: Wiley-Interscience.
[57] Kirkpatrick, L. A.; Feeney, B. C. (2013): A simple guide to IBM SPSS statistics for version 20.0 (Student ed.). Belmont, Calif.: Wadsworth, Cengage Learning.
[58] Dolatabadian, A.; Jouneghani, R. S. (2009): Impact of Exogenous Ascorbic Acid on Antioxidant Activity and Some Physiological Traits of Common Bean Subjected to Salinity Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, Vol. 37 (2): pp 165-172.
[59] Mittal, N.; Thakur, S.; Verma, H.; Kaur, A. (2018): Interactive Effect of Salinity and Ascorbic Acid on Brassica Rapa L. Plants. Global Journal of Bio-Science and Biotechnology, Vol. 7 (1): pp 2018: 27-29.
[60] Ye, N.; Zhu, G.; Liu, Y.; Zhang, A.; Li, Y.; Liu, R. (2012): Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. Journal of Experimental Botany, Vol. 63: pp 1809-1822.
[61] Ebrahimian, E.; Bybordi, A. (2012): Effect of salinity, salicylic acid, silicium and ascorbic acid on lipid peroxidation, antioxidant enzyme activity and fatty acid content of sunflower. African Journal of Agricultural Research, Vol. 7 (25): pp 3685-3694.
[62] Athar, H. R.; Khan, A.; Ashraf, M. (2009): Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. Journal of Plant Nutrition, Vol. 32: pp 1799-1817.
[63] Zheng, Y.; Jia, A.; Ning, T.; Xu, J.; Li, Z.; Jiang, G. (2008): Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal Plant Physiology, Vol. 165 (14): pp 1455-1465.
[64] Azevedo, R. A.; Carvalho, R. F.; Cia, M. C.; Gratao, P. L. (2011): Sugarcane under pressure: An overview of biochemical and physiological studies of abiotic stress. Tropical Plant Biology, Vol. 4: pp 42-51.
[65] Meloni, D. A.; Martinez, C. A. (2009): Glycinebetaine improves salt tolerance in vinal (Prosopis ruscifolia Griesbach) seedlings. Brazilian Journal Plant Physiol., Vol. 21: pp 233-241.
[66] Ejaz, B.; Sajid, Z. A.; Aftab, F. (2012): Effect of exogenous application of ascorbic acid on antioxidant enzyme activities, proline contents, and growth parameters of Saccharum spp. hybrid cv. HSF-240 under salt stress. Turkish Journal of Biology, Vol. 36: pp 630-640.
[67] Yusuf, M.; Fariduddin, Q.; Varshney, P.; Ahmad, A. (2012): Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environmental Science and Pollution Research, Vol. 19: pp 8–18.
[68] Liu, W.; Zhang, Y.; Yuan, X.; Xuan, Y.; Gao, Y.; Yan, Y. (2016): Exogenous salicylic acid improves salinity tolerance of Nitraria tangutorum. Russian Journal of Plant Physiology, Vol. 63 (1): pp 132-142.
[69] Nazar, R.; Umar S.; Khan, N. A. (2015): Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling & Behavior, Vol. 10 (3): p 1003751.
[70] Li, G.; Peng, X.; Wei, L.; Kang, G. (2013): Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene Journal, Vol. 529: pp 321-325.
[71] Ma, X.; Zheng, J.; Zhang, X.; Hu, Q.; Qian, R. (2017): Salicylic Acid Alleviates the Adverse Effects of Salt Stress on Dianthus superbus (Caryophyllaceae) by Activating Photosynthesis, Protecting Morphological Structure, and Enhancing the Antioxidant System. Frontiers in Plant Science, Vol. 8: pp 600-608.
[72] Khalifa, G. S.; Abdelrassoul, M.; Hegazi, A. M.; Elsherif, M. H. (2016): Attenuation of Negative Effects of Saline Stress in two Lettuce Cultivars by Salicylic Acid and Glycine Betaine. Gesunde Pflanzen, Vol. 68 (4) pp: 177-189.
[73] Hoque, M. D. A.; Okuma, E.; Banu, M. N. A.; Nakamura, Y.; Shimoishi, Y.; Murata, Y. (2007): Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology, Vol. 164 (5): pp 553-561.
[74] Nawaz, K.; Ashraf, M. (2010): Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. Journal of Agronomy and Crop Science, Vol. 196: pp 28–37.
[75] Siddiqui, M. H.; Alamri, S. A.; Al-Khaishany, M. Y. Y.; Al-Qutami, M. A.; Ali, H. M. (2018): Ascorbic acid application improves salinity stress tolerance in wheat. Chiang Mai J. Sci., Vol. 45: pp 1-11.
[76] Hameed, A.; Gulzar, S.; Aziz, I.; Hussain, T.; Gul, B.; Khan, M. A. (2015): Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants, Vol. 7.
[77] Szabados, L.; Savooure, A. (2010): Proline: a multifunctional amino acid. Trends in Plant Science., Vol. 15: pp 89–97.
[78] Bulgari, R.; Trivellini, A.; Ferrante, A. (2019): Effects of Two Doses of Organic Extract-Based Biostimulant on Greenhouse Lettuce Grown Under Increasing NaCl Concentrations. Frontiers in Plant Science, Vol. 9: Article 1870.
[79] Ashraf, M.; Harris, P. J. C. (2004): Potential biochemical indicators of salinity tolerance in plants. Plant Science, Vol. 166: pp 3-16.
[80] Maggio, A.; Miyazaki, S.; Veronese, P.; Fujita, T.; Ibeas, J. I.; Damsz, B.; Narasimhan, M. L.; Hasegawa, P. M.; Joly, R. J.; Bressan, R. A. (2002): Does proline accumulation play an active role in stress-induced growth reduction. Plant Journal, Vol. 31: pp 699–712.
[81] Ahmed, S.; Ahmed, S.; Roy, S. K.; Woo, S. H.; Sonawane, K. D.; Shohael, A. M. (2019): Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture, Vol. 4: pp 361-373.
[82] Das, P.; Seal, P.; Biswas, A. K. (2016): Regulation of growth, antioxidants and sugar metabolism in rice (Oryza sativa L.) seedlings by NaCl and its reversal by silicon. American Journal of Plant Sciences, Vol. 7: pp 623-638.
[83] Gharsallah, C.; Fakhfakh, H.; Grubb, D.; Gorsane F. (2016): Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants, Vol. 8: pp1-60.
[84] Palliyath, S.; Puthur, J. T. (2018): The modulation of various physiochemical changes in Bruguiera cylindrica (L.) Blume affected by high concentrations of NaCl. Acta Physiologiae Plantarum, Vol. 40 (9): pp 1-18.
[85] Zahra, S.; Amin, B.; Mehdi, Y. (2010): The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) germination, growth and photosynthetic pigment under salinity stress (NaCl). Journal of Stress Physiology and Biochemistry, Vol. 6 (3): pp 4–16.
[86] Bartha, C.; Fodorpataki, L.; Martinez-Ballesta, M. C.; Popescu, O.; Carvajal, M. (2015): Sodium accumulation contributes to salt stress tolerance in lettuce cultivars. Journal of Applied Botany and Food Quality, Vol. 88: pp 42 -48.
[87] Younis, M. E.; Hasaneen, M. N. A.; Tourky, S. M. N. (2009): Plant growth metabolism and adaptation in relation to stress conditions. XXIV, Salini­ty-biofertility interactive effects on proline, glycine and various antioxi­dants in Lactuca sativa. Plant Omics Journal, Vol. 2 (5): pp 197-205.
[88] Sakr, M. T.; El-Sarkassy, N. M.; Fuller, M. P. (2015): Minimization the Effects of Salt Stress on Sweet Pepper Plants by Exogenous Protectants Application. Zagazig Journal of Agricultural Botany, Vol. 42 (6): pp1397-1410.
[89] Azzedine, F.; Gherroucha, H.; Baka, M. (2011): Improvement of Salt Tolerance in Durum Wheat by Ascorbic Acid Application. Journal of Stress Physiology and Biochemistry, Vol. 7 (1): pp. 27-37.
[90] El-Afry, M. M.; El-Okkiah, S. A. F.; El-Kady E. A. F.; El-Yamanee, G. S. A. (2018): Exogenous application of ascorbic acid for alleviation the adverse effects of salinity stress in flax (Linum usitatissimum L.). Middle East Journal of Agriculture Research, Vol. 7 (3): pp 716-739.
[91] Rady, M. M.; Sadak, M. S.; El-Bassiouny, H. M. S.; Abd El-Monem, A. A. (2011): Alleviation the adverse effects of salinity stress in sun flower cultivars using nicotinamide and a -Tocopherol. Australian Journal of Basic and Applied Sciences Journal, Vol. 5: pp 342-355.
[92] Saeidnejad, A. H.; Mardani, H.; Naghibolghora, M. (2012): Protective effects of salicylic acid on physiological parameters and antioxidants response in maize seedlings under salinity stress. Journal of Applied Environmental and Biological Sciences, Vol. 2 (8): pp 364-373.
[93] Hussain, K.; Nawaz, K.; Majeed, A.; Ilyas, U.; Lin, F.; Ali, K.; Nisar, M. F. (2011): Role of exogenous salicylic acid applications for salt tolerance in violet (Viola Odorata L.). Sarhad Journal of Agriculture, Vol. 27 (2): pp 171-175.
[94] Misra, N.; Saxena, N. (2009): Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, Vol. 177: pp 181–189.
[95] Marcinska, I.; Czyczyło-Mysza, I.; Skrzypek, E.; Grzesiak, M.; Janowiak, F.; Filek, M.; Dziurka, M.; Dziurka, K.; Waligorski, P.; Juzon, K.; Cyganek, K.; Grzesiak, S. (2013): Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. International Journal of Molecular Sciences, Vol. 14 (7): pp 13171–13193.
[96] Misra, N.; Misra, R. (2012): Salicylic acid changes plant growth parameters and proline metabolism in Rauwolfia serpentina leaves grown under salinity stress. American- Eurasian Journal of Agricultural and Environmental Sciences, Vol. 12: pp 1601–1609.
[97] Simaei, M.; Khavari-Nejad, R. A.; Saadatmand, S.; Bernard, F.; Fahimi, H. (2011): Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accumulation in Glycine Max L. treated with NaCl salinity. African Journal of Agricultural Research, Vol. 6 (16): pp 3775-3782.
[98] Sayyari, M.; Ghavami, M.; Ghanbari, F.; Kordi, S. (2013): Assessment of salicylic acid impacts on growth rate and some physiological parameters of lettuce plants under drought stress conditions. International Journal of Agriculture and Crop Sciences, Vol. 5 (17): pp 1951-1957.
[99] Delavari, P. M.; Baghizadeh, A.; Enteshari, S. H.; Kalantari, K. H. M.; Yazdanpanah, A.; Mousavi, E. A. (2010): The Effects of salicylic acid on some of biochemical and morphological characteristic of Ocimum basilicucm under salinity stress. Australian Journal of Basic and Applied Sciences, Vol. 4 (10): pp 4832-4845.
[100] Hniličková, H.; Hnilička, F.; Orsák, M.; Hejnák, V. (2019): Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant, Soil and Environment, Vol. 65: pp 90–96.
[101] Yousif, B. S.; Nguyen, N. T.; Fukuda, Y.; Hakata, H.; Okamoto, Y.; Masa­oka, Y.; Saneoka, H. (2010): Effect of salinity on growth, mineral composition, photosynthesis and water relations of two vegeta­ble crops; New Zealand spinach (Tetragonia tetragonioides) and water spinach (Ipomoea aquatic). International Journal of Agri­culture and Biology, Vol. 12: pp 211–216.
[102] Naz, S.; Hamayun, M.; Sayyed, A.; Gul, S.; Parveen, Z.; Khalid, M.; Gul, H. (2015): Effect of foliarly applied potassium on Capsicum Annuum L. grown under sodium chloride stress. International Journal of Agronomy and Agricultural Research (IJAAR), Vol. 6 (5): pp 47-61.
[103] Kaya, C.; Tuna, A. L.; Ashraf, M.; Altunlu, H. (2007): Improved salt tolerance of melón (Cucumis melo L.) by addition of proline and potassium nitrate. Environmental and Experimental Botany, Vol. 60: pp 397-403.
[104] Alemán-Guillén, F. (2009): K+ uptake in plants with different salt tolerance. PhD Thesis. University Murcia. Spain.
[105] Farahat, M. M.; Mazhar, A. A. M.; Mahgoub, M. H.; Zaghloul, S. M. (2013): Salt tolerance in Grevillea robusta seedlings via foliar application of ascorbic acid. Middle-East Journal of Scientific Research, Vol. 14: pp 09–15.
[106] Barakat, H. (2003): Interactive effects of salinity and certain vitamin on gene expression and cell division. International Journal of Agriculture and Biology, Vol. 3: pp 219-225.
[107] Turhan, A.; Kuscu, H.; Ozmen, N.; Sitki Serbeci, M.; Osman Demir, A. (2014): Effect of different concentrations of diluted seawater on yield and quality of lettuce. Chilean Journal of Agricultural Research, Vol. 74 (1): pp 111-116.
[108] Miceli, A.; Moncada, A.; D’Anna, F. (2003): Effect of salt stress in lettuce cultivation. Acta Horticulturae, Vol. 609: pp 371-375.
[109] Turhan, A.; Kuscu, H.; Ozmen, N.; Asik, B. B.; Serbeci, M. M.; Seniz, V. (2013): Alleviation of deleterious effects of salt stress by applications of supplementary potassium-calcium on spinach. Journal Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, Vol. 63: pp 184-192.
[110] Shabala, S.; Shabala, L.; Cuin, T.; Pang, J.; Percey, W.; Chen, Z.; Conn, S.; Eing, C.; Wegner, L. (2010): Xylem ionic relations and salinity toler­ance in barley. Plant Journal, Vol. 61: pp 839-853.
[111] Munns, R.; Tester, M. (2008): Mechanisms of salinity tolerance. Annual Review of Plant Biology, Vol. 59: pp 651–681.
[112] Zhao, Q.; Ma, B. L. and Ren, C. Z. (2007): Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Science, Vol. 47: pp 123-131.
[113] Al-Erwy, A. S.; Al-Toukhy, A.; Bafeel, S. O. (2016): Effect of Chemical, Organic and Bio Fertilizers on photosynthetic pigments, carbohydrates and minerals of Wheat (Triticum aestivum. L) Irrigated with Sea Water. International Journal of Advanced Research in Biological Sciences, Vol. 3 (2): pp 296-310.
[114] Mukhomorov, V.; Anikina, L. (2011): Interrelation of Chemical Elements Content in Plants under Conditions of Primary Soil Formation. Open Journal of Soil Science, Vol. 1 (1): pp 1-7.
[115] Radi, A. A.; Farghaly, F. A.; Hamada, A. M. (2013): Physiological and biochemical responses of salt tolerant and salt-sensitive wheat and bean cultivars to salinity. Journal of Biology and Earth Sciences, Vol. 3 (1): pp 72-88.
[116] Netondo, G. W.; Onyango, J. C.; Beck, E. (2004): Sorghum and Salinity: I. Response of Growth, Water Relations and Ion Accumulation to NaCl Salinity. Crop Science, Vol. 44: pp 797-805.
[117] Loukehaich, R.; Elyachioui, M.; Belhabib, N.; Douira, A. (2011): Identifying multiple physiological responses associated with salinity tolerance for evaluating three tomato cultivars selected from Moroccan territory. The Journal of Animal and Plant Sciences, Vol. 21 (1): pp 1219-1231.
[118] Djanaguiraman, M.; Sheeba, J. A.; Shanker, A. K.; Devi, D. D.; Bangarusamy, U. (2006): Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant and Soil, Vol. 284: pp 363–373.
[119] Uddin, M. K.; Juraimi, A. S.; Anwar, F.; Hossain, M. A.; Alam, M. A. (2012): Effect of salinity on proximate mineral composition of purslane (Portulaca oleracea L.). Australian Journal of Crop Sci­ence, Vol. 12: pp 1732–1736.
[120] James, R. A.; Blake, C.; Byrt, C. S.; Munns, R. (2011): Major genes for Na+ exclusion, Nax 1 and Nax 2 (wheat HKT 1; 4 and HKT 1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, Vol. 62: pp 2939–2947.
[121] Tester, M.; Davenport, R. (2003): Na+ tolerance and Na+ transport in higher plants. Annals of Botany, Vol. 91 (5): pp 503-527.
[122] Kao, W. Y.; Tsai, T. T.; Tsai, H. C.; Shin, C. N. (2006): Response of three Glycine species to salt stress. Environmental and Experimental Botany, Vol. 56. pp 120–125.
[123] Azuma, R.; Ito, N.; Nakayama, N.; Suwa, R.; Nguyen, N. T.; Larrinaga-Mayoral, J. Á.; Esaka M.;, Fujiyama, H.; Saneoka, H. (2010): Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Scientia Horticulturae, Vol. 125 (3): pp 171-178.
[124] El-Bially, M.; Saudy, H.; Ibrahim El-Metwally, I.; Mostafa Shahin, M. (2018): Efficacy of ascorbic acid as a cofactor for alleviating water deficit impacts and enhancing sunflower yield and irrigation water–use efficiency. Agricultural Water Management, Vol. 208: pp 132-139.
[125] Osmana, A. S.; Abdel Wahedb, M. H.; Rady, M. M. (2018): Ascorbic Acid Improves Productivity, Physio–Biochemical Attributes and Antioxidant Activity of Deficit-Irrigated Broccoli Plants. Biomedical Journal of Scientific & Technical Research, Vol. 11 (1).
[126] Alami-Milani, M.; Aghaei-Gharachorlou, P. (2015): Effect of ascorbic acid application on yield and yield components of lentil (Lens culinaris Medik.) under salinity stress. International Journal of Biosciences, Vol. 6: pp 43–49.
[127] El-Hifny, I. M. M.; El-Sayed, M. A. M. (2011): Response of Sweet Pepper Plant Growth and Productivity to Application of Ascorbic Acid and Bio-fertilizers under Saline Conditions. Australian Journal of Basic and Applied Sciences, Vol. 5 (6): pp 1273-1283.
[128] Raafat, N. Z.; Radwan, T. E. E. (2011): Improving wheat grain yield and its quality under salinity conditions at a newly reclaimed soil by using different organic sources as soil or foliar applications. Journal of Applied Science Research, Vol. 7 (1): pp 42-55.
[129] Gunes, A.; Inal, A.; Alpaslan, M.; Cicek, N.; Guneri, E.; Eraslan, F.; Guzelordu, T. (2005): Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Archives of Agronomy and Soil Science, Vol. 51: pp 687-695.
[130] Gunes, A.; Inal, A.; Alpaslan, M.; Eraslan, F.; Bagci, E. G.; Cicek, N. (2007): Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, Vol. 164 (6): pp 728-736.
[131] Talaat, N. B. (2003): Physiological studies on the effect of salinity, ascorbic acid and putrescine on sweet pepper plant. Ph. D Thesis, Agriculture Botany Department, Faculty of Agriculture, Cairo University, pp: 286.
[132] El-Banna, E. N.; Ashour, S. A.; Abd-El-Salam, H. Z. (2006): Effect of foliar application with organic compounds on growth, yield and tubers quality of potato (Solanum tuberosum L.). Mansoura Journal of Agricultural Science, Vol. 31 (2): pp 1165-1173.
[133] El-Tohamy, W. A.; El-Abagy, H. M.; El-Greadly, N. H. M. (2008): Studies on the effect of putrescine, yeast and vitamin c on growth, yield and physiological responces of Eggplant (solanum melongena L.) under sandy soil conditions. Australian Journal of Basic and Applied Sciences, Vol. 2 (2): pp296-300.
[134] Masahumi, J.; Masayuki, O.; Genjiro, M. (2008): Ascorbic acid promotes graft-take in sweet pepper plants. Scientia Horticulturae, Vol. 116: pp 343-347.
[135] Khafagy, M. A.; Arafa, A. A.; El-Banna, M. F. (2009): Glycinebetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. Australian Journal of Crop Science, Vol. 3: pp 257–267.
[136] Guimarães, F. V. A.; de Lacerda, C. F.; Marques, E. C.; de Abreu, C. E. B.; de Aquino, B. F.; Prisco, J. T.; Gomes-Filho, E. (2012): Supplemental Ca2+ does not improve growth but it affects nutrient uptake in NaCl-stressed cowpea plants. Brazilian Society of Plant Physiology, Vol. 24 (1): pp 9-18.
[137] Essa, T. A. (2002): Effect of salinity stress on growth and nutrient composition of three soybeans (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science, Vol. 188: pp 86–93.
[138] Syeed, S.; Anjum, N. A.; Nazar, R.; Iqbal, N.; Masood, A.; Khan, N. A. (2011): Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiologiae Plantarum, Vol. 33: pp 877–886.
[139] Sadak, M. S.; Abd Elhamid, E. M.; Mhmed, M. M. R. (2017): Glutathione Induced Antioxidant Protection Against Salinity Stress in Chickpea (Cicer arietinum L.) Plant. Egyptian Journal of Botany, Vol. 57 (2): pp 293-302.
[140] Karlidag, H.; Yildirim, E.; Turan, M. (2009): Salicylic Acid Ameliorates the Adverse Effect of Salt Stress on Strawberry. Scientia Agricola, Vol. 66 (2): pp 180-187.
[141] Sadak, M. S.; Abd Elhamid, E. M. (2013): Physiological response of flax cultivars to the effect of salinity and salicylic acid. Journal of Applied Sciences Research, Vol. 9 (6): pp 3573-3581.
[142] Rady, M. M.; Sadak, M. S.; El-Lethy, S. R.; Abd El- Hamid, E. M.; Abdelhamid, M. T. (2015): Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted seawater. Journal of Horticultural Science & Biotechnology, Vol. 90 (2):
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.