American Journal of Circuits, Systems and Signal Processing
Articles Information
American Journal of Circuits, Systems and Signal Processing, Vol.4, No.3, Sep. 2018, Pub. Date: Oct. 9, 2018
(Kink; Kink) and (Pulse; Pulse) Exact Solutions of Equations Modeled in a Nonlinear Capacitive Electrical Line with Crosslink Capacitor
Pages: 45-53 Views: 1357 Downloads: 356
Authors
[01] Tiague Takongmo Guy, Departement of Physics, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon.
[02] Jean Roger Bogning, Departement of Physics, Higher Teacher Training College, University of Bamenda, Bamenda, Cameroon.
Abstract
The property of non-loss of energy by solitary wave during its propagation has enlightened us to find out in what measure one can propagate it in electrical lines. In this paper, we define analytically nonlinear properties that must obey the electrical line components so that their media accept to propagate solitary waves, then one applies Kirchhoff laws to the circuit of the coupled line to model new set of two nonlinear partial differential equations which govern the dynamics of a set of solitary waves. Furthermore, one constructs coupled solutions of solitary wave types of the said equations. The results obtained in this paper notably the analytical definitions which must undergo nonlinear charges of capacitors in the line, the set of nonlinear partial differential equations and their exact coupled soliton solutions will permit: The amelioration of the quality of signal susceptible of propagating in the line, to facilitate the choice of the type of the line relative to the choice of the type of signal to transmit, to economize by reducing amplification stations, to increase the mathematical knowledge and to enable the manufacturing of new nonlinear capacitors. The capacitive electrical line with crosslink capacitor that one is studying is advantageous for the fact that it permits simultaneously the propagation of a set of two solitary waves contrary to a non-coupled capacitive electrical line which only enables the propagation of one solitary wave when the signal considered is the voltage; the more one multiplies the crosslink in the line, the more one multiplies the simultaneous propagation of solitary wave in the line.
Keywords
Capacitive Electrical Line, Coupled Solution, Propagation, Kink, Pulse
References
[01] J. R. Bogning, A. S. Tchakoutio Nguetcho, T. C. Kofané, Gap solitons coexisting with bright soliton in nonlinear fiber arrays. International Journal of nonlinear science and numerical simulation, Vol. 6 (4), (2005) 371-385.
[02] A. M. Wazwaz, A reliable treatment of the physical structure for the nonlinear equation K(m,n), Appl. Math. Comput, 163, (2005) 1081-1095.
[03] Ekici, M., Zhou, Q., Sonmezoglu, A., Moshokoa, S. P., Zaka Ullah, M., Biswas, A., Belic, M.: Solitons in magneto-optic waveguides by extended trial function scheme. Superlattices Microstruct. 107, 197–218 (2017c).
[04] Jawad, A. J. M., Mirzazadeh, M., Zhou, Q., Biswas, A.: Optical solitons with anti-cubic nonlinearity using three integration schemes. Superlattices Microstruct. 105, 1–10 (2017).
[05] Mirzazadeh, M., Ekici, M., Sonmezoglu, A., Eslami, M., Zhou, Q., Kara, A. H., Milovic, D., Majid, F. B., Biswas, A., Belic, M.: Optical solitons with complex Ginzburg–Landau equation. Nonlinear Dyn. 85 (3), 1979–2016 (2016).
[06] Seadawy, A. R., Lu, D.: Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrodinger equation and its stability. Results Phys. 7, 43–48 (2017).
[07] M. L. Wang, Exact solutions for a compound Käv- Burgers equation, Phys. Lett. A. 213, (1996) 279-287.
[08] E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277, (2000) 212-218.
[09] E. Fan, J. Zhang, A note on the homogeneous balance method, Phys. Lett. A, 305, (2002) 383-392.
[10] Y. B. Zhou, M. L. Wang, Y. M. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients, Phys. Lett. A, 308, (2003) 31-37.
[11] A. M. Wazwaz, Solutions of compact and non compact structures for nonlinear Klein-Gordon type equation, Appl. Math. Comput, 134, (2003) 487-500.
[12] A. M. Wazwaz, Traveling wave solutions of generalized forms of Burgers – KdV and Burgers Huxly equations, Appl. Math. Comput, 169, (2005) 639-656.
[13] Z. Feng, The first integral method to study the Burgers – Korteweg-de-Vries equation, J. Phys. Lett. A. 35, (2002), 343-349.
[14] Z. Feng, On explicit exat solutions for the Lienard equation and its applications, J. Phys. Lett. A. 293, (2002), 57-66.
[15] Z. Feng, On explicit exact solutions to compound Burgers- KdV equation, J. Math. Anal. Appl. 328, (2007), 1435-1450.
[16] J. R. Bogning, C. T. Djeumen Tchaho and T. C. Kofané, “Construction of the soliton solutions of the Ginzburg-Landau equations by the new Bogning-Djeumen Tchaho-Kofané method”, Phys. Scr, Vol. 85, (2012), 025013-025017.
[17] J. R. Bogning, C. T. Djeumen Tchaho and T. C. Kofané, “Generalization of the Bogning- Djeumen Tchaho-Kofane Method for the construction of the solitary waves and the survey of the instabilities”, Far East J. Dyn. Sys, Vol. 20, No. 2, (2012), 101-119.
[18] C. T. Djeumen Tchaho, J. R. Bogning, and T. C. Kofané, “Modulated Soliton Solution of the Modified Kuramoto-Sivashinsky's Equation”, American Journal of Computational and Applied Mathematics”, Vol. 2, No. 5, (2012), 218-224.
[19] C. T. Djeumen Tchaho, J. R. Bogning and T. C. Kofane, “Multi-Soliton solutions of the modified Kuramoto-Sivashinsky’s equation by the BDK method”, Far East J. Dyn. Sys. Vol. 15, No. 2, (2011), 83-98.
[20] C. T. Djeumen Tchaho, J. R. Bogning and T. C. Kofane, “Construction of the analytical solitary wave solutions of modified Kuramoto-Sivashinsky equation by the method of identification of coefficients of the hyperbolic functions”, Far East J. Dyn. Sys. Vol. 14, No. 1, (2010), 14-17.
[21] J. R. Bogning, “Pulse Soliton Solutions of the Modified KdV and Born-Infeld Equations” International Journal of Modern Nonlinear Theory and Application, 2, (2013), 135-140.
[22] J. A. Tusjynki, S. Portet, J. M. Dixon, C. Luxford and H. F. Cantiello. 2004. Ionic Wave Propagation along acting Filaments. Biophys. J. 86: 1890-1903.
[23] Yamigno, S. D. (2014) Propagation of Dark solitary waves in the Korteweg-Devries-Burgers Equation Describing the nonlinear RLC Transmission. Journsal of Modern physics, 5, 394-401.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.