American Journal of Renewable and Sustainable Energy
Articles Information
American Journal of Renewable and Sustainable Energy, Vol.1, No.3, Sep. 2015, Pub. Date: Aug. 17, 2015
Moisture Sorption Isotherms and Isosteric Heats of Sorption of Tomato Slices
Pages: 140-155 Views: 4429 Downloads: 1888
Authors
[01] Sana Ben Mariem, Higher Institute of Agronomic Sciences of Chott-Mariem, University of Sousse, Sousse, Tunisia; Labratory of Thermal Process, Research and Technology Centre of Energy, Borj Cédria, Tunisia.
[02] Salah Ben Mabrouk, Labratory of Thermal Process, Research and Technology Centre of Energy, Borj Cédria, Tunisia.
Abstract
The adsorption and desorption isotherms of tomato were determined by static gravimetric method at different temperatures, in the range from 30°C to 60°C and relative humidities of 5%–85%. The curves obtained can be considered as type II according to the Brunauer–Emmett–Teller classification. Equilibrium moisture content data were correlated by different mathematical models usually applied to foodstuffs (GAB, Peleg, Smith, Caurie, Oswin…). A non-linear least square regression analysis was used to evaluate the models constants. The best fit of the experimental data was obtained with GAB and Peleg models. The Chung-Pfost model was the least adequate. Hysteresis was also observed at all temperatures investigated. The isosteric heat of sorption was determined using the Claussius–Clapeyron equation, and it decreases with increasing moisture content at the average temperatures investigated.
Keywords
Equilibrium Moisture Content, Isosteric Heat, Sorption Isotherm, Tomato, Water Activity
References
[01] Akanbi C. T., Adeyemi R .S., Ojo A., 2006. Drying characteristics and sorption isotherms of tomato slices. Journal of Food Engineering, 73, 157-163.
[02] Al-muhtasab, .A. H, McMinn, W. A. M., & Magee. T.R.A. 2002. Moisture sorption isotherm characteristics of food products: a review .Trans IChem E, Vol 80, Part C.
[03] Al-Muhtaseb, A.H., McMinn, W. A. M., Magee, T. R. A., 2004. Water sorption isotherms of starch powders. Part 2: thermodynamic characteristics. Journal of Food Engineering 62, 135–142.
[04] Boquet R., Chirifie J. & Iglesias H.A. (1978). Equations for fitting water sorption isotherms of foods. II. Evaluation of various two-parameter models, Journal of Food Engineering, vol. 13, pp. 319-327.
[05] Brunauer. S., Deming. L.S., Deming, W.E., & Teller.E. 1940. On a theory of the Van der Waals adsorption of gases. Journal of the American Chemical Society, 62, 1723–1732.
[06] Cheftel J.C., Cheftel H., 1977. Introduction à la biochimie et à la technologie des aliments (volume 1), Techniques et Documentation-Lavoisier, Paris : 371 p.
[07] Caurie, M., 1970. A new model equation for predicting safe storage moisture levels for optimum stability of dehydrated foods. Journal of Food Technology, 5: 301–307.
[08] Chung D.H. et Pfost H.B. (1967). Adsorption and desorption of water vapor by cereal grains and their products, Trans. ASAE, vol. 10, pp. 549-550.
[09] Goula A.M., Karapantsios T. D., Dimitris S. A., Adamopoulos, 2008. Water sorption isotherms and glass transition temperature of spray dried tomato pulp. Journal of Food Engineering, 85: 73-83.
[10] Harkirns, W. D. and Jura, G. J., The Decrease of Free Surface Energy as a Basis for the Development of Equations for Adsorption Isotherms; and the Existence of Two Condensed Phases in Films on Solids, Journal of Chem. Phys. 12, 112-113, 1944.
[11] Iglesias H. A., & Chirife J., 1976, Isosteric heats of water vapour sorption on dehydrated foods. Part II: hysteresis and heat of sorption comparison with BET theory, Lebensmittel-Wissenchaft und Technologie, vol. 9, pp. 123-127.
[12] Iglesias H. A., & Chirife J., 1982, Water sorption parameters for food and food components, Handbook of food isotherms, Academic Press, New York.
[13] Kiranoudis C. T. & al., 1993, Equilibrium moisture content and heat of desorption of some vegetables, Journal of Food Engineering, vol. 20, pp. 55-74.
[14] Kouhila M., 2001. Étude expérimentale et théorique des cinétiques de séchage convectif partiellement solaire des plantes médicinales et aromatiques (menthe, verveine, sauge et eucalyptus) de la région de Marrakech. Thèse de Doctorat Univesité Cadi Ayyad, Marrakech, pp 284.
[15] Lewicki P P (1998). A three parameter equation for food moisture isotherms. Journal of Food Process Engineering, 21(2), 127–144
[16] Mafart P., 1991. Les procédés physiques de conservation. In : Génie industriel alimentaire (Tome 1). Technique et Documentation Lavoisier, Paris. pp. 246-251.
[17] McLaughlin C P; Magee T R A (1998). The determination of sorption isotherms and the isosteric heats of sorption for potatoes. Journal of Food Engineering, 35(3), 267–280 (Moreira et al., 2008).
[18] Myhara R. M., Sablani S., 2001. Unification of fruit water sorption isotherms using artifiial neural networks. Drying Technology, 19(8): 1543-1554.
[19] Noumi G.B., S. Laurent, E. Ngameni, C. Kapseu, Y. Jannot et M. Parmentier, 2004. Modélisation de la déshydratation de la pulpe des fruits du Canarium schweinfurthii Engl. Tropicultura, 22, 2, 70-76
[20] Oswin G. R. (1946). The kinetics of package life, Indian Chemical Industry, vol. 65, pp. 419-442.
[21] Peleg M., 1993. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. Journal of Food Process Engineering, 16: 21–37.
[22] Pezzutti A; Crapiste G H (1997). Sorption equilibrium and drying characteristics of garlic. Journal of Food Engineering, 31(1), 113–125
[23] Salgado M. A., Lebert A., Garcia H. S., Muchnik J. & Bimbenet J. J. (1994). Development of the characteristic drying curve for casava chips in monolayer, Drying Technology, vol. 12, n° 3, pp. 685-696.
[24] Smith S.E. (1947). The sorption of water vapor by high polymers, Journal of American Chemical Society, vol. 69, pp. 646.
[25] Sanni L O; Atere C; Kuye A (1997). Moisture sorption isotherms of Fufu and tapioca at different temperatures. Journal of Food Engineering, 34(2), 203–212
[26] Tsami E., 1991, Net isosteric heat of sorption in dried fruits, Journal of Food Engineering, vol. 14, pp. 327-335.
[27] Van den Berg, C. (1985). Development of B.E.T. like models for sorption of water of foods; theory and relevance. In D. Simatos & J. L. Multon (Eds.), Properties of water in foods (pp. 119–135). Dordrecht: Martinus Nijhoft Publishers.
[28] Viswanathan R., D.S. Jayas, R. B. Hulasare (2003). Sorption Isotherms of Tomato Slices and Onion Shreds. Biosystems Engineering 86 (4), 465–472.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.