American Journal of Renewable and Sustainable Energy
Articles Information
American Journal of Renewable and Sustainable Energy, Vol.4, No.3, Sep. 2018, Pub. Date: Sep. 4, 2018
Impact Analysis on Power Quality of a Small Distributed Generation
Pages: 56-63 Views: 1081 Downloads: 414
[01] Talita de Araujo Santos Fernandes Afonso, Department of Electrical Engineering, Fluminense Federal University (UFF), Niteroi, Rio de Janeiro, Brazil.
[02] Leonardo de Arruda Bitencourt, Department of Electrical Engineering, Fluminense Federal University (UFF), Niteroi, Rio de Janeiro, Brazil.
[03] Marcio Zamboti Fortes, Department of Electrical Engineering, Fluminense Federal University (UFF), Niteroi, Rio de Janeiro, Brazil.
[04] Sergio Gomes Junior, Department of Electrical Engineering, Fluminense Federal University (UFF), Niteroi, Rio de Janeiro, Brazil.
[05] Renan Silva Maciel, Department of Electrical Engineering, Paraná Federal University of Technology (UTFPR), Apucarana, Paraná, Brazil.
This paper aims to analyze the harmonics generated in a system when there are different levels of penetration of solar photovoltaic generation. A real system in the city of Buzios (Brazil) was simulated in the program HarmZs with measured values of existent panels. The harmonic total distortion of voltage was evaluated and it was seen that in the scenarios with massive penetration of photovoltaic generators, the limits established were violated, indicating that it will be necessary to make new arrangements in the system, such as in filter allocation, to support the entrance of a great amount of distributed generation. This study shows that the insertion of new (small) renewable sources connected to the grid should be discussed within the context of power quality to prevent major distortions in electrical systems that are adequate and meet the existing regulations for power distribution.
Photovoltaic Systems, Solar Energy, Power System Simulation, Distributed Generation, Power Quality
[01] EPE, Plano de Desenvolvimento Energético - PDE 2026, 2017 [Online]. Available at: http:// [Access: 16 feb 2018]. (Portuguese)
[02] T. Lhendup, Rural electrification in Bhutan and a methodology for evaluation of distributed generation system as an alternative option for rural electrification, Energy for Sustainable Development 12 (3) (2008) 13-24. doi: 10.1016/S0973-0826(08)60434-2.
[03] C. W. Shyu, End-users' experiences with electricity supply from stand-alone mini-grid solar PV power stations in rural areas of western China, Energy for Sustainable Development 17 (2013) 391-400. doi: 10.1016/j.esd.2013.02.006.
[04] M. Vatani, M. J. Sanjari, G. B. Gharehpetian, Islanding detection in multiple-DG microgrid by utility side current measurement, International Transactions on Electrical Energy Sytems 25 (2015) 1905-1922. doi: 10.1002/etep.1942.
[05] C. Yammani, S. Maheswarapu, S. K. Matam SK, Optimal placement, and sizing of distributed generations using shuffled bat algorithm with future load enhancement, International Transactions on Electrical Energy Systems 26 (2016) 274-292. doi: 10.1002/etep.2076.
[06] H. Jouybari-Moghaddam, S. H. Hosseinian, B. Vahidi, Grid reconnection detection for synchronous distributed generators in stand-alone operation, International Transactions on Electrical Energy Systems 25 (2015) 138-154. doi: 10.1002/etep.1829.
[07] R. A. Walling, R. Saint, R. C. Dugan, J. Burke, L. A. Kojovic, Summary of Distributed Resources Impact on Power Delivery Systems, IEEE Transactions on Power Delivery 23 (2008) 1636–1644. doi: 10.1109/TPWRD.2007.909115.
[08] M. Karimi, H. Mokhlis, K. Naidu, S. Uddin, A. H. A. Bakar, Photovoltaic penetration issues and impacts in distribution network – A review, Renewable and Sustainable Energy Reviews 53 (2016) 594–605. doi: 10.1016/j.rser.2015.08.042.
[09] P. R. Khatri, V. S. Jape, M. Lokhande, B. S. Motling, Improving power quality by distributed generation, in: 7th International Power Engineering Conference, 2005, pp. 675–678. doi: 10.1109/IPEC.2005.206993.
[10] W. N. Macedo, R. Zilles, Influence of the power contribution of a grid-connected photovoltaic system and its operational particularities, Energy for Sustainable Development 13 (2009) 202-211. doi: 10.1016/j.esd.2009.08.001.
[11] Q. Shi, H. Hu, W. Xu, J. Yong, Low-order harmonic characteristics of photovoltaic inverters, International Transactions on Electrical Energy Systems 26 (2016) 347-364. doi: 10.1002/etep.2085.
[12] J. Rodway, P. Musilek, S. Misak, L. Prokop, P. Bilik, V. Snasel, Towards prediction of photovoltaic power quality, in: 26th Annual IEEE Canadian Conference on Electrical and Computer Engineering, 2013, pp.1–4. doi: 10.1109/CCECE.2013.6567680.
[13] G. A. Rampinelli, F. P. Gasparin, A. J. Bühler, A. Krenzinger, F. C. Romero, Assessment and mathematical modeling of energy quality parameters of grid connected photovoltaic inverters, Renewable and Sustainable Energy Reviews 52 (2015) 133–141. doi: 10.1016/j.rser.2015.07.087.
[14] T. Ackermann, V. Knyazkin, Interaction between distributed generation and the distribution network: operation aspects, in: IEEE/PES Transmission and Distribution Conference and Exhibition, 2002, pp. 1357–1362. doi: 10.1109/TDC.2002.1177677.
[15] P. M. Ivry, M. J. Rawa, D. W. P. Thomas, M. Sumner, Power quality of a voltage source converter in a smart grid, in: IEEE Grenoble Power Tech, 2013, pp. 1–6. doi: 10.1109/PTC.2013.6652457.
[16] J. Urbanetz, P. Braun, R. Rüther, Power quality analysis of grid-connected solar photovoltaic generators in Brazil, Energy Conversion Management 64 (2012) 8–14. doi: 10.1016/j.enconman.2012.05.008.
[17] A. Varatharajan, S. Schoettke, J. Meyer, A. Abart, Harmonic Emission of Large PV Installations - Case Study of a 1 MW Solar Campus, in: International Conference on Renewable Energies and Power Quality, 2014.
[18] D. B. Prakash, C. Lakshminarayana, Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm, Alexandria Engineering Journal 56 (2017) 499-509. doi: 10.1016/j.aej.2016.10.002.
[19] ANEEL, Resolução Normativa N° 482, Agência Nacional de Energia Elétrica, 2015. [Online]. Available at: [Access: 16 feb 2018]. (Portuguese)
[20] ANEEL, Prodist - Módulo 8 Revisão 6, Agência Nacional de Energia Elétrica, 2015. [Online]. Available at: [Access: 16 feb 2018]. (Portuguese)
[21] IEEE Power & Energy Society, Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, IEEE Standards Board. IEEE recommended practice and requirements for harmonic control in electric power systems. 2014.
[22] “Cidade Inteligente Búzios”. [Online]. Disponível em: [Access: 16-jul-2018]. (Portuguese)
[23] Ampla, Levantamento do Perfil Energético de Búzios, Technical Report, 2015. (Portuguese)
[24] S. Yilmaz, H. R. Ozcalik, S. Kesler, F. Dincer, B. Yelmen, The analysis of different PV power systems for the determination of optimal PV panels and system installation - A case study in Kahramanmaras Turkey, Renewable Sustainable Energy Reviews 52 (2015) 1015–1024. doi: 10.1016/j.rser.2015.07.146.
[25] “HarmZs - Estudos de Comportamento Harmônico e Análise Modal de Redes Elétricas”. [Online]. Available: [Access: 27-jul-2018] (Portuguese)
[26] A. R. A. Manito, M. E. L. Tostes, C. C. M. M. Carvalho, K. N. V. Matos et al., Harmonic Analysis of the Electrical System of an Industry of Aluminium at the Connection Point with the Brazilian National Interconnected System, in: IEEE/PES Transmission and Distribution Conference and Exposition Latin America, 2008, pp.1-6. doi: 10.1109/TDC-LA.2008.4641701.
[27] S. L. Varricchio, S. Gomes Jr, R. D. Rangel, Three windings transformer s-domain model for modal analysis of electrical networks, Electrical Power and Energy Systems 33 (2011) 420-429. doi: 10.1016/j.ijepes.2010.10.003.
[28] A. Chidurala, T. K. Saha, N. Mithulananthan, R. C. Basal, Harmonic emissions in grid connected PV systems: A case study on a large-scale rooftop PV site, in: IEEE PES General Meeting, 2014, pp. 1-5. doi: 10.1109/PESGM.2014.6939147.
[29] I. I. Perpinias, N. P. Papanikolaou, E. C. Tatakis, Fault ride through concept in low voltage distributed photovoltaic generators for various dispersion and penetration scenarios, Sustainable Energy Technology and Assessments 12 (2015) 15–25. doi: 10.1016/j.seta.2015.08.004.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.