Clinical Medicine Journal
Articles Information
Clinical Medicine Journal, Vol.1, No.3, Aug. 2015, Pub. Date: Jun. 2, 2015
Detection of Staphylococcus aureus-Specific Gene and Simultaneous Confirmation of Methicillin Resistant Staphylococcus aureus (MRSA) By Polymerase Chain Reaction
Pages: 88-93 Views: 1632 Downloads: 1041
[01] Kumurya A. S., Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano, Nigeria.
Background: The differentiation of Methicillin resistant Staphylococcus aureus (MRSA) strains from other strains of S. aureus has important implications for the treatment and management of patients with S. aureus infections. Detection of the mecA gene by PCR has been described as a rapid method for the identification of MRSA. Objectives: A molecular assay for the simultaneous detection of a Staphylococcus aureus-specific gene and the mecA gene, responsible for the resistance to methicillin in staphylococci, was evaluated. Methods: In a clinical study, 100 isolates of Staphylococcus aureus were investigated. Polymerase chain reaction (PCR) was used (with a Techne TC-5000 instrument-Bibby Scientific Ltd.) to amplify both the S. aureus specific sequence gene and mecA gene of 100 isolates with the amplicon size of 107 and 532bp. To accelerate the procedure of identification in clinical microbiology laboratories, simple and rapid method for DNA extraction directly from a single colony was employed. The assay included a rapid DNA extraction protocol conducted in 15 minutes and PCR conducted. The performance and robustness of the assay was evaluated with a control strain of methicillin susceptible Staphylococcus aureus-ATCC 25923 (MSSA). The specificity of the new molecular assay was tested with a bacterial strain of methicillin susceptible Staphylococcus aureus-ATCC 25923 (MSSA). Results: All clinical the isolates gave positive results for the S. aureus-specific genomic target, and only five isolates (5.0%) were positive for the mecA gene. Conclusion: The new rapid DNA extraction protocol was found to be quick, robust, and labor saving and it proved to be suitable for a routine molecular diagnostic laboratory. On the basis of this finding; establishment of molecular diagnostic laboratory in secondary and tertiary health units is urgently required.
Staphylococcus Aureus, MRSA, MecA Gene, DNA Extraction, PCR
[01] Barski, P., L. Piechowicz, J. Galinski, and J. Kur (1996). Rapid assay for detection of methicillin-resistant Staphylococcus aureus using multiplex PCR. Mol. Cell. Probes 10:471-475.
[02] Benner, E. J., and F. H. Kayser (1968). Growing clinical significance of methicillin-resistant Staphylococcus aureus. Lancetii:741-744.
[03] Boyce, J. M (2001). MRSA patients: proven methods to treat colonization and infection. J.Hosp. Infect. 48:(Suppl. A):9-14.
[04] Brakstad, O. G., K. Aasbakk, and J. A. Maeland (1992). Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 30:1654-1660.
[05] Chaix, C., I. Durand-Zaleski, C. Alberti, and C. Brun-Buisson (1999). Control of endemic methicillin-resistant Staphylococcus aureus: a cost-benefit analysis in an intensive care unit JAMA 18:1745-1751.
[06] Chambers, H. F(1993). Detection of methicillin-resistant staphylococci. Infect. Dis. Clin. N.Am. 7:425-433.
[07] Chambers, H. F (1997). Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev. 10:781-791.
[08] Fournier, J. M., A. Boutonnier, and A. Bouvet (1989). Staphylococcus aureus strains which are not identified by rapid agglutination methods are of capsular serotype 5. J. Clin. Microbiol. 27:1372-1374.
[09] Frebourg, N. B., D. Nouet, L. Lemée, E. Martin, and J.-F. Lemeland (1998). Comparison of ATB Staph, Rapid ATB Staph, Vitek, and E-test methods for detection of oxacillinheteroresistance in staphylococci possessing mecA. J. Clin. Microbiol. 36:52-57.
[10] Hartman, B. J., and A. Tomasz (1984). Low-affinity penicillin-binding protein associated withβ-lactam resistance in Staphylococcus aureus. J. Bacteriol. 158:513-516.
[11] Kearns, A. M., P. R. Seiders, J. Wheeler, R. Freeman, and M. Steward (1999). Rapid detection of methicillin-resistant staphylococci by multiplex PCR. J. Hosp. Infect. 43:33-37.
[12] Kessler, H. H., G. Muehlbauer, E. Stelzl, E. Daghofer, B. I. Santner, and E. Marth (2001). Fully automated nucleic acid extraction. MagNA Pure LC. Clin. Chem. 47:1124-1126.
[13] Kohner, P., J. Uhl, C. Kolbert, D. Persing, and F. Cockerill III (1999). Comparison of susceptibility testing methods with mecA gene analysis for determining oxacillin (methicillin) resistance in clinical isolates of Staphylococcus aureus and coagulase-negative Staphylococcus spp. J. Clin. Microbiol. 37:2952-2961.
[14] Lowy, F. D (1998). Staphylococcus aureus infections. N. Engl. J. Med. 339:520-532.
[15] Martineau, F., F. J. Picard, P. H. Roy, M. Ouellette, and M. G. Bergeron (1998). Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J.Clin. Microbiol. 36:618-623.
[16] National Committee for Clinical Laboratory Standards (1993). Approved standard M2-A5. Performance standards for antimicrobial disk susceptibility tests. National Committee for Clinical Laboratory Standards, Villanova, Pa.
[17] National Committee for Clinical Laboratory Standards (1999). Performance standards for antimicrobial susceptibility testing. Ninth informational supplement M100-S9. National Committee for Clinical Laboratory Standards, Wayne, Pa.
[18] Panlilio, A. L., D. H. Culver, R. P. Gaynes, S. Banerjee, T. S. Henderson, J. S. Tolson, and W. J. Martone (1992). Methicillin-resistant Staphylococcus aureus in U. S. hospitals, 1975-1991. Infect. Control Hosp. Epidemiol. 13:582-586.
[19] Reischl, U., H.-J. Linde, M. Metz, B. Leppmeier, and N. Lehn (2000). Rapid identification of methicillin-resistant Staphylococcus aureus and simultaneous species confirmation using real-time fluorescence PCR. J. Clin. Microbiol. 38:2429-2433.
[20] Ribeiro, J., F. D. Vieira, T. King, J. B. D'Arezzo, and J. M. Boyce (1999). Misclassification of susceptible strains of Staphylococcus aureus as methicillin-resistant S. aureus by a rapid automated susceptibility testing system. J. Clin. Microbiol. 37:1619-1620.
[21] Ruane, P. J., M. A. Morgan, D. M. Citron, and M. E. Mulligan (1986). Failure of rapid agglutination methods to detect oxacillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 24:490-492.
[22] Tan, T. Y., S. Corden, R. Barnes, and B. Cookson (2001). Rapid identification of methicillin-resistant Staphylococcus aureus from positive blood cultures by real-time fluorescence PCR. J.Clin. Microbiol. 39:4529-4531.
[23] Tokue, Y., S. Shoji, K. Satoh, A. Watanabe, and M. Motomiya (1991). Detection of methicillin-resistant Staphylococcus aureus (MRSA) using polymerase chain reaction amplification. J. Exp.Med. 163:31-37.
[24] Tokue, Y., S. Shoji, K. Satoh, A. Watanabe, and M. Motomiya (1992). Comparison of a polymerase chain reaction assay and a conventional microbiolgic method for detection of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.36:6-9.
[25] Tomasz, A., H. B. Drugeon, H. M. de Lencastre, D. Jabes, L. McDougall, and J. Bille (1989). New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob. Agents Chemother. 33:1869-1874.
[26] Trees, D. L., and J. J. Iandolo (1988). Identification of a Staphylococcus aureus transposon (Tn4291) that carries the methicillin resistance gene(s). J. Bacteriol. 170:149-154.
[27] Ubukata, K., R. Nonoguchi, M. Matsuhashi, and M. Konno (1989). Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. J. Bacteriol. 171:2882-2885.
[28] Ünal, S., J. Hoskins, J. E. Flokowitsch, C. Y. E. Wu, D. A. Preston, and P. L. Skatrud (1992). Detection of methicillin-resistant staphylococci by using the polymerase chain reaction. J. Clin. Microbiol. 30:1685-1691.
[29] Ünal, S., K. Werner, P. DeGirolami, F. Barsanti, and G. Eliopoulos (1994). Comparison of tests for detection of methicillin-resistant Staphylococcus aureus in a clinical microbiology laboratory. Antimicrob. Agents Chemother. 38:345-347.
[30] Voss, A., D. Milatovic, C. Wallrauch-Schwarz, V. T. Rosdahl, and I. Braveny (1994). Methicillin-resistant Staphylococcus aureus in Europe. Eur. J. Clin. Microbiol. Infect. Dis. 13:50-55.
[31] Wallet, F., M. Roussel-Delvallez, and R. J. Courcol (1996). Choice of a routine method for detecting methicillin-resistance in staphylococci. J. Antimicrob. Chemother.37:901-909.
[32] Waxman, D. J., and J. L. Strominger (1983). Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu. Rev. Biochem. 52:825-869.
[33] Weeres-Pothoff, G., C. E. M. Moolhuijzen, and G. P. A. Bongaerts (1987). Comparison of seven coagulase tests for identification of Staphylococcus aureus. Eur. J. Clin. Microbiol. 6:589-591.
[34] Wenzel, R. P., D. R. Reagan, J. S. Bertino, Jr., E. J. Baron, and K. Arias (1998). Methicillin-resistant Staphylococcus aureus outbreak: a consensus panel's definition and management guidelines. Am. J. Infect. Control 26:102-110.
[35] Wilkerson, M., S. McAllister, J. M. Miller, B. J. Heiter, and P. P. Bourbeau (1997). Comparison of five agglutination tests for identification of Staphylococcus aureus. J. Clin. Microbiol. 35:148-151.
[36] York, M. K., L. Gibbs, F. Chehab, and G. F. Brooks (1996). Comparison of PCR detection of mecA with standard susceptibility testing methods to determine resistance in coagulase-negative staphylococci. J. Clin. Microbiol. 34:249-253.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - 2017 American Institute of Science except certain content provided by third parties.