International Journal of Advanced Materials Research
Articles Information
International Journal of Advanced Materials Research, Vol.1, No.5, Nov. 2015, Pub. Date: Dec. 20, 2015
‘Molecular Imprinting’ as Multidisciplinary Material Science: Today and Tomorrow
Pages: 132-154 Views: 2641 Downloads: 2101
Authors
[01] Munawar Hussain, Biosensor Research Group, Institute of Clinical and Experimental Transfusion Medicine and Centre of Clinical Transfusion Medicine (ZKT), Tuebingen University and German Red Cross Blood Transfusion Service BW/H, Tuebingen, Germany.
Abstract
The review article focuses ‘Molecular Imprinting’ a multidisciplinary material view from the window of past trends to present’s and future’s road map. This is a first critical 'review of reviews' that covers the field from laboratory research to advanced material science in industrial applications. The article gives insight into ideas in the perspectives of step by step past trends, practical discussions and tips, its significance, applications, challenges, the ways to cope the challenges and a possible future or direction of the technique. By using selected case studies, it provides a comprehensive overview and a complete picture of the entire field. It illustrates the key soul of imprinting technology, via screening through pros and cons perspectives. The number of publications and applications of molecular imprinting is increasing exponentially and a common audience feels madness due to vastness in the today’s research climate of multidisciplinary nature. In which direction we are moving?, it can be hard for a busy scientist to keep pace with innovations or cherry pick useful advice from the mass of literature. In these perspectives, this review is equally suitable for all audiences from beginners to experts of today and tomorrow. The article could provide a launch pad to the future of imprinting technology for mining big information in all domains, its applications and far beyond.
Keywords
Molecular Imprinting, Review of Reviews, Advanced Material, Multi-discipline, Applications, Challenges, Present, Future
References
[01] Vlatakis, G.; Andersson, L. I.; Müller R.; Mosbach, K.; Drug Assay Using Antibody Mimics Made by Molecular Imprinting, Nat..1993, 361, 645-647.
[02] Bowen, J. L.; Manesiotis P.; Allender, C. J.; Twenty Years Since ‘Antibody Mimics’ by Molecular Imprinting were First Proposed: A Critical Perspective, MOLIM.. 2013, 201, 35-40.
[03] Kirsch, N.; Nicholls, I. A.; O’Mahony J.; Michael, J.; Molecular Imprinting Science and Technology: A Survey of the Literature for the Years up to and Including 2003, J. Mol. Recognit.. 2006, 19, 106-180.
[04] Whitcombe, M. J.; Kirsch N.; Nicholls, I. A. Molecular Imprinting Science and Technology: A Survey of the Literature for the Years 2004–2011, J. Mol. Recognit.. 2014, 27, 297-401.
[05] Wulff, G.; Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates - A Way towards Artificial Antibodies, Angew. Chem. Int. Ed. 1995, 34, 1812-1832.
[06] Ramstrom O.; Ansell, R. J.; Molecular Imprinting Technology: Challenges and Prospects for the Future, Chirality. 1998, 10, 195-209.
[07] Haupt K.; Mosbach, K. Plastic Antibodies: Developments and Applications, Tibtech. 1998, 16, 468-475.
[08] Ye L.; Mosbach, K.; The Technique of Molecular Imprinting - Principle, State of the Art, and Future Aspects, J. Incl. Phenom. Macrocycl. Chem. 2001, 41, 107-113.
[09] Yoshikawa, M.; Molecularly Imprinted Polymeric Membranes, Bioseparation. 2002, 10, 277-286.
[10] Kandimalla V. B.; Ju, H. Molecular Imprinting: A Dynamic Technique for Diverse Applications in Analytical Chemistry, Anal. Bioanal. Chem. 2004, 380, 587-605.
[11] Zimmerman S. C.; Lemcoff, N. G. Synthetic Hosts via Molecular Imprinting are Universal Synthetic Antibodies Realistically Possible?, Chem. Commun. 2004, Feature article, 5-14. doi: 10.1039/b304720b
[12] Greene, N. T.; Morgan, S. L.; Shimizu, K. D. Molecularly Imprinted Polymer Sensor Arrays Chem. Commun. 2004, 10, 1172-1173.
[13] Greene, N. T.; Shimizu, K. D. Colorimetric Molecularly Imprinted Polymer Sensor Array Using Dye Displacement, J. Am. Chem. Soc. 2005, 127, 5695-5700.
[14] Dickert, F.; Lieberzeit, P. A.; Achatz, P.; Palfinger, C.; Fassnauer, M.; Schid, E.; Werther, W.; Horner, G. QCM Array for on-line-Monitoring of Composting Procedures, Analyst. 2004, 129, 432-437.
[15] Takeuchi, T.; Daisuke, G.; Hideyuki, S. Protein Profiling by Protein Imprinted Polymer Array, Analyst. 2007, 132, 101-103.
[16] Ye L.; Mosbach, K. Molecular Imprinting: Synthetic Materials As Substitutes for Biological Antibodies and Receptors, Chem. Mater. 2008, 20, 859-868.
[17] Öpik, A.; Menaker, A.; Reut J.; Syritski, V. Molecularly Imprinted Polymers: A New Approach to the Preparation of Functional Materials, Proc. Estonian Acad. Sci. 2009, 58, 1, 3-11.
[18] Flavin K.; Resmini, M. Imprinted Nanomaterials: A New Class of Synthetic Receptors Anal. Bioanal. Chem 2009, 393, 437-444.
[19] Nicholls I. A.; Rosengren, J. P. Molecular Imprinting of Surfaces, Bioseparation. 2002, 10, 301-305.
[20] Verheyen, E.; Schillemans, J. P.; Wijk, M. V.; Demeniex, M. A.; Hennink, W. E.; van Nostrum, C. F. Challenges For the Effective Molecular Imprinting of Proteins Biomater. 2011, 32, 3008-3020.
[21] Vasapollo, G.; Sole, R. D.; Mergola, L.; Lazzoi, M. R.; Scardino, A.; Scorrano S.; Mele, G. Molecularly Imprinted Polymers: Present and Future Prospective, Int. J. Mol. Sci. 2011, 12, 5908-5945.
[22] Xu, Z.; Khan M. A. U.; Kamra, T.; Schnadt, J.; Ye. L. Fluorescent Boronic Acid Polymer Grafted on Silica Particles for Affinity Separation of Saccharides, ACS Appl. Mater. Interfaces. 2014, 6(3), 1406-1414.
[23] Chen, L.; Xuab S.; Li, J. Recent Advances in Molecular Imprinting Technology: Current Status, Challenges and Highlighted Applications, Chem. Soc. Rev. 2011, 40, 2922-2942.
[24] Xu, Z. X.; Gao, H. J.; Zhang, L. M.; Chen, X. Q.; Qiao, X. G. The Biomimetic Immunoassay Based on Molecularly Imprinted Polymer: A Comprehensive Review of Recent Progress and Future Prospects, J. Food Sci. 2011, 76(2), 59-75.
[25] Trotta, F.; Biasizzo, M.; Caldera, F. Molecularly Imprinted Membranes, Membranes. 2012, 2, 440-477.
[26] Kandimalla V. B.; H. Ju, Molecular Imprinting: A Dynamic Technique for Diverse Applications in Analytical Chemistry, Anal. Bioanal. Chem. 2004, 380, 587-605.
[27] Mafu L. D.; Msagati T. A. M.; Mamba, B. B. Ion-Imprinted Polymers for Environmental Monitoring of Inorganic Pollutants: Synthesis, Characterization, and Applications, Environ. Sci. Pollut. Res. 2013, 20, 790-802.
[28] Jiang, X.; Jiang, N.; Zhang H.; Liu, M. Molecular Imprinting for Anion Recognition in Aqueous Media, Anal. Bioanal. Chem. 2007, 389, 355-368.
[29] Ge Y.; Turner, A. P. F. Too Large to Fit? Recent Developments in Macromolecular Imprinting, Chem. Eur. J. 2009, 15, 8100-8107.
[30] Baggiani, C.; Anfossi L.; Giovannoli, C. MIP-Based Immunoassays: State of the Art, Limitations and Perspectives, MOLIM. 2013, 201, 41-54.
[31] Wu, X. Molecular Imprinting for Anion Recognition in Aqueous Media, Microchim. Acta.. 2012, 176, 23-47.
[32] Andersson, L. I.; Molecular Imprinting: Developments and Applications in the Analytical Chemistry Field, J. Chromatogr. B. 2000, 745, 3-13.
[33] Maier N. M.; Lindner, W. Chiral Recognition Applications of Molecularly Imprinted Polymers: A Critical Review Anal. Bioanal. Chem., 2007, 389, 377-397.
[34] Ariga, K.; Richards, G. J.; Ishihara, S.; Izawa H.; Hill, J. P. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts, Sensors. 2010, 10, 6796-6820.
[35] Lieberzeit P. A.; Dickert, F. L. Chemosensors in Environmental Monitoring: Challenges in Ruggedness and Selectivity, Anal. Bioanal. Chem. 2009, 393, 467-472.
[36] Shen, X.; Zhu, L.; Wang, N.; Yec L.; Tang, H. Molecular Imprinting for Removing Highly Toxic Organic Pollutants, Chem. Commun. 2012, 48, 788-798.
[37] Kyzas G. Z.; Bikiaris, D. N. Molecular Imprinting for High-Added Value Metals: An Overview of Recent Environmental Applications, Adv. Mat. Sci. Eng. 2014, doi: http://dx.doi.org/10.1155/2014/932637
[38] Murray A.; Örmeci, B. Application of Molecularly Imprinted and Non-Imprinted Polymers for Removal of Emerging Contaminants in Water and Wastewater Treatment: A Review, Sci. Pollut. Res. 2012, 19, 3820-3830.
[39] Shen, X.; Xu C.; Ye, L. Molecularly Imprinted Polymers for Clean Water: Analysis and Purification, Ind. Eng. Chem. Res. 2013, 52, 13890-13899.
[40] Yan H.; Ho, K. Characteristic and Synthetic Approach of Molecularly Imprinted Polymer, Int. J. Mol. Sci.. 2006, 7, 155-178.
[41] Kumar R.; Agrawal, Y. K. Analytical Strategies for Characterization of Molecular Imprinted Polymers: A current Review, Int. J. Chem.Tech. Res. 2014, 6(2), 1162-1167.
[42] Lorenzo, R. A.; Carro, A. M.; Lorenzo C. A.; Concheiro, A. To Remove or Not to Remove? The Challenge of Extracting the Template to Make the Cavities Available in Molecularly Imprinted Polymers (MIPs), Int. J. Mol. Sci. 2011, 12, 4327-4347.
[43] Hilta J. Z.; Byrne, M. E. Configurational Biomimesis in Drug Delivery: Molecular Imprinting of Biologically Significant Molecules, Adv. Drug Deliv. 2004, 56, 1599-1620.
[44] Ge Y.; Turner, A. P. F. Too Large to Fit? Recent Developments in Macromolecular Imprinting, Trends Biotechnol. 2008, 26(4), 218-224.
[45] Takeuchi T.; Hishiya, T. Molecular Imprinting of Proteins Emerging as a Tool for Protein Recognition, Org. Biomol. Chem. 2008, 6, 2459-2467.
[46] Vera, M. C.; Cárdenas R. L. S.; Valcárcel, M. Highly Selective and Non-Conventional Sorbents for the Determination of Biomarkers in Urine by Liquid Chromatography, Anal. Bioanal. Chem. 2010, 397, 1029-1038.
[47] Hu, X.; Hao, L.; Wang, H.; Yang, X.; Zhang, G.; Wang G.; Zhang, X. Hydrogel Contact Lens for Extended Delivery of Ophthalmic Drugs, J. Polym. Sci. 2011, doi:10.1155/2011/814163
[48] Kryscio D. R.; Peppas, N. A. Critical Review and Perspective of Macromolecularly Imprinted Polymers, Acta Biomater. 2012, 8, 461-473.
[49] Turner, N. W.; Jeans, C. W.; Brain, K. R.; Allender, C. J.; Hlady V.; Britt, D. W. From 3D to 2D: A Review of the Molecular Imprinting of Proteins, Biotechnol. Prog. 2006, 22(6), 1474-1489.
[50] Schrader T.; Koch, S. Artificial Protein Sensors, Mol. BioSyst. 2007, 3, 241-248.
[51] Janiak D. S.; Kofinas, P. Molecular Imprinting of Peptides and Proteins in Aqueous Media, Anal. Bioanal. Chem. 2007, 389, 399-404.
[52] Bossi, A.; Bonini, F.; Turner A. P. F.; Piletsky, S. A. Molecularly Imprinted Polymers for the Recognition of Proteins: The State of the Art, Biosens. Bioelectron.. 2007, 22, 1131-1137.
[53] Hansen, D. E. Recent Developments in the Molecular Imprinting of Proteins, Biomater. 2007, 28, 4178-4191.
[54] Balamurugan S. Spivak, D. A. Molecular Imprinting in Monolayer Surfaces, J. Mol. Recognit. 2011, 24, 915-929.
[55] Lv, Y.; Tan T.; Svec, F. Molecular Imprinting of Proteins in Polymers Attached to the Surface of Nanomaterials for Selective Recognition of Biomacromolecules, Biotechnol. Adv. 2013, 31, 1172-1186.
[56] Tan C. J.; Tong, Y. W. Molecularly Imprinted Beads by Surface Imprinting, Anal. Bioanal. Chem. 2007, 389, 369-376.
[57] Hussain, M.; Northoff, H.; Gehring, F.K. Detection of HIT Antibody Dependent Platelet Aggregation using Novel Surface Imprinting Approach, Talanta. 2016, 147, 1-7. doi: 10.1016/j.talanta.2015.09.027
[58] Andersson, L. I.; Molecular Imprinting for Drug Bioanalysis A Review on the Application of Imprinted Polymers to Solid-Phase Extraction and Binding Assay, J. Chromatogr. B 2000, 739, 163-173.
[59] Bures, P.; Huang, Y.; Oral E.; Peppas, N. A. Surface Modifications and Molecular Imprinting of Polymers in Medical and Pharmaceutical Applications J. Controlled Release 2001, 72, 25-33.
[60] Hentze H. P.; Antonietti, M. Porous Polymers and Resins for Biotechnological and Biomedical Applications, Rev. Mol. Biotechnol. 2002, 90, 27-53.
[61] Ye L.; Haupt, K. Molecularly Imprinted Polymers as Antibody and Receptor Mimics for Assays, Sensors and Drug Discovery, Anal. Bioanal. Chem. 2004, 378, 1887-1897.
[62] Nostrum, C. F. V. Molecular Imprinting: A New Tool for Drug Innovation, Drug Discov. Today, 2005, 2(1), 119-124.
[63] Chaterji, S.; Kwon K.; Park, K. Smart Polymeric Gels: Redefining the Limits of Biomedical Devices, Prog. Polym. Sci. 2007, 32(8-9),1083-1122.
[64] Lorenzo C. A.; Concheiro, A. Intelligent Drug Delivery Systems: Polymeric Micelles and Hydrogels, Mini Rev. Med. Chem. 2008, 8, 1065-1074.
[65] Lulinski, P. Molecularly Imprinted Polymers as the Future Drug Deliverly Devices, Acta Pol. Pharm. 2013, 70, 601-609.
[66] Suedee, R. Novel Strategic Innovations for Designing Drug Delivery System Using Molecularly Imprinted Micro/Nanobeads, Int. J. Pharm. Sci. Rev. Res. 2013, 20(2), 235-268.
[67] Hussain, M.; Iqbal, N.; Lieberzeit, P. A. Acidic and Basic Polymers for Molecularly Imprinted Folic Acid Sensors-QCM Studies with Thin Films and Nanoparticles, Sens. Act. B. 2013, 176, 1090-1095.
[68] Hussain M.; Sinn S.; Zeilinger M.; Northoff H.; Lieberzeit P. A.; Gehring F. K. Blood Coagulation Thromboplastine Time Measurements on a Nanoparticle Coated Quartz Crystal Microbalance Biosensor in Excellent Agreement with Standard Clinical Methods, J. Biosens. Bioelectron. 2013, 4(4): 139. doi: 10.4172/2155-6210.1000139
[69] Lieberzeit, P. A.; Dickert, F. L. Rapid Bioanalysis with Chemical Sensors: Novel Strategies for Devices and Artificial Recognition Membranes, Anal. Bioanal. Chem. 2008, 391, 1629-1639.
[70] Hussain, M.; Wackerlig J.; Lieberzeit, P. A. Biomimetic Strategies for Sensing Biological Species, Biosensors. 2013, 3, 89-107.
[71] Schirhagl, R. Bioapplications for Molecularly Imprinted Polymers, Anal. Chem. 2014, 86, 250-261.
[72] Byrne, M. E.; Park K.; Peppas, N. A. Molecular Imprinting within Hydrogels, Adv. Drug Deliv. 2002, 54, 149-161.
[73] Miyata, T.; Uragami T.; Nakamae, K. Biomolecule-Sensitive Hydrogels, Adv. Drug Deliv. 2002, 54, 79-98.
[74] Byrne M. E.; Salian, V. Molecular Imprinting within Hydrogels II: Progress and Analysis of the Field, Int. J. Pharm. 2008, 364, 188-212.
[75] Ramstrom, O.; Skudar, K.; Haines, J.; Patel P.; Bruggemann, O. Food Analyses Using Molecularly Imprinted Polymers, J. Agric. Food Chem. 2001, 49(5), 2105-2114.
[76] Baggiani, C.; Anfossi L.; Giovannoli, C. Molecular Imprinted Polymers as Synthetic Receptors for the Analysis of Myco- and Phyco-Toxins, Analyst. 2008, 133, 719-730.
[77] Lok, C. M.; Son, R. Application of Molecularly Imprinted Polymers in Food Sample Analysis - A Perspective, Int. Food Res. J. 2009, 16, 127-140.
[78] Maragos, C. M.; Recent Advances in the Development of Novel Materials for Mycotoxin Analysis, Anal. Bioanal. Chem. 2009, 395, 1205-1213.
[79] Garcia, R.; Cabrita M. J.; Freitas, A. M. C. Application of Molecularly Imprinted Polymers for the Analysis of Pesticide Residues in Food - A Highly Selective and Innovative Approach, Am. J. Anal. Chem. 2011, 2, 16-25.
[80] Saini S. S.; Kaur, A. Molecularly Imprinted Polymers for the Detection of Food Toxins: A Minireview, ANP. 2013, 2, 60-65.
[81] Ramström O.; Mosbach, K. Synthesis and Catalysis by Molecularly Imprinted Materials, Curr. Opin. Chem. Biol. 1999, 3, 759-764.
[82] Severin, K. Imprinted Polymers with Transition Metal Catalysts, Curr. Opin. Chem. Biol. 2000, 4, 710-714.
[83] Wulff, G. Enzyme-like Catalysis by Molecularly Imprinted Polymers, Chem. Rev. 2002, 102(1), 1-27.
[84] Becker J. J.; Gagneä, M. R. Exploiting the Synergy between Coordination Chemistry and Molecular Imprinting in the Quest for New Catalysts, Acc. Chem. Res. 2004, 37, 798-804.
[85] Ichinose I.; Kunitakew, T. Wrapping and Inclusion of Organic Molecules with Ultrathin, Amorphous Metal Oxide Films, Chem. Rec. 2002, 2, 339-351.
[86] Kunitake T.; Lee, S. W. Molecular Imprinting in Ultrathin Titania Gel Films via Surface Sol-gel Process, Anal. Chim. Acta. 2004, 504, 1-6.
[87] Tada M.; Iwasawa, Y. Advanced Chemical Design with Supported Metal Complexes for Selective Catalysis, Chem. Commun. 2006, Feature article, 2833-2844. doi: 10.1039/b601507g
[88] Wulff G.; Liu, J. Design of Biomimetic Catalysts by Molecular Imprinting in Synthetic Polymers: The Role of Transition State Stabilization, Acc. Chem. Res. 45(2), 2012, 239-247.
[89] Muratsugu S.; Tada, M. Molecularly Imprinted Ru Complex Catalysts Integrated on Oxide Surfaces, Acc. Chem. Res. 2013, 46(2), 300-311.
[90] Elena, M.; Garcıa D.; Laino, R. B. Molecular Imprinting in Sol-Gel Materials: Recent Developments and Applications, Microchim. Acta. 2005, 149, 19-36.
[91] Gupta R.; Kumar, A. Molecular Imprinting in Sol-gel Matrix, Biotech. Adv. 2008, 26, 533-547.
[92] Walcarius A.; Collinson, M. M. Analytical Chemistry with Silica Sol-Gels: Traditional Routes to New Materials for Chemical Analysis, Annu. Rev. Anal. Chem. 2009, 2, 121-43.
[93] Mujahid, A.; Lieberzeit P. A.; Dickert, F. L. Chemical Sensors Based on Molecularly Imprinted Sol-Gel Materials, Mater. 2010, 3, 2196-2217.
[94] Lofgreen J. E.; Ozin, G. A. Controlling Morphology and Porosity to Improve Performance of Molecularly Imprinted Sol-gel Silica, Chem. Soc. Rev. 2014, 43, 911-933.
[95] Algieri, C.; Drioli, E.; Guzzo L.; Donato, L. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes, Sensors. 2014, 14, 13863-13912
[96] Chambers, J. P.; Arulanandam, B. P.; Matta, L. L.; Weis A.; J. J. Valdes, Biosensor Recognition Elements, BRE. 2008, 10, 1-12.
[97] Turner, A. P. F. Biosensors: Sense and Sensibility, Chem. Soc. Rev. 2013, 42, 3184-3196.
[98] Uludag, Y.; Piletsky, S. A.; Turner A. P. F.; Cooper, M. A. Electrochemical Sensors Based on Molecularly Imprinted Polymers, FEBS J. 2007, 274, 5471-5480.
[99] Hussain M. PiCT: 1st Recognition for Human Whole Blood on QCM-D Platform, UK J. Pharm. Biosci. 2015, 3(5), 01-08.
[100] Hussain M. Prothrombin Time (PT) for Human Plasma on QCM-D platform: A Better Alternative to 'Gold Standard', UK J. Pharm. Biosci. 2015, 3(6), 01-08.
[101] Hussain M. Shortened 'Thrombin Time' Monitoring on QCM-D: A Better Substitute of 'Gold Standard', UK J. Pharm. Biosci. 2016, 4(1), 20-26.
[102] Hussain M. aPTT: 1st Recognition for Human Whole Blood on QCM-D Platform, UK J. Pharm. Biosci. 2015, 3(6), 49-55.
[103] Hussain M. Argatroban Monitoring in Human Plasma: aPTT and PiCT Studies on QCM-D vs 'Gold Standard'. UK J. Pharm. Biosci. 2015, 3(6), 42-48.
[104] Hussain M. A Simultaneous Monitoring of Coagulation Time and Fibrinogen via PiCT on QCM-D, UK J. Pharm. Biosci. 2016; 3(6), 27-35.
[105] Hussain M.; Gehring, F. K.; Sinn S.; Northoff, H. A Straightforward Detection of HIT Type II via QCM-D, UK J. Pharm. Biosci. 2015, 3(6), 18-29.
[106] Hussain, M.; Northoff, H.; Gehring, F. K. QCM-D Providing New Horizon in the Domain of Sensitivity Range and Information for Haemostasis of Human Plasma, Biosens. Bioelectron. 2015, 66, 579-584.
[107] Kindy, S. A.; Badía, R.; Rodríguez J. L. S.; García, M. E. D. Molecularly Imprinted Polymers and Optical Sensing Applications, Crit. Rev. Anal. Chem. 2000, 30(4), 291-309.
[108] Piletsky S. A.; Turner, A. P. F. Electrochemically Synthesized Polymers in Molecular Imprinting for Chemical Sensing Electroanal., 2002, 14(5), 317-323.
[109] Sharma, P. S.; Le, A. P.; Souza F. D.; Kutner, W. Electrochemically Synthesized Polymers in Molecular Imprinting for Chemical Sensing, Anal. Bioanal. Chem. 2012, 402, 3177-3204.
[110] Malitesta, C.; Mazzotta, E.; Picca, R. A.; Poma, A.; Chianella I.; Piletsky, S. A. MIP Sensors - the Electrochemical Approach, Anal. Bioanal. Chem. 2012, 402, 1827-1846.
[111] Zaidi S. A.; Shin, J. H. Molecularly Imprinted Polymer Electrochemical Sensors Based on Synergistic Effect of Composites Synthesized from Graphene and Other Nanosystems Int. J. Electrochem. Sci 2014, 9, 4598-4616.
[112] Schirhagl, R.; Ren K. N.; Zare, R. N. Surface-Imprinted Polymers in Microfluidic Devices, Sci. China Chem. 2012, 55(4), 469-483.
[113] Yakovleva, M.; Bhand S.; Danielsson, B. The Enzyme Thermistor - A Realistic Biosensor Concept. A Critical Review, Anal. Chim. Acta. 2013, 766, 1-12.
[114] Cheong, W. J.; Yang S. H.; Ali, F. Molecular Imprinted Polymers for Separation Science: A Review of Reviews, J. Sep. Sci. 2013, 36, 609-628.
[115] Heegaard, N. H. H.; Nilsson S.; Guzman, N. A. Affinity Capillary Electrophoresis: Important Application Areas and Some Recent Developments, J. Chromatogr B. 1998, 715, 29-54.
[116] Christodoulou, C. P. K.; Zhu X.; Warner, I. M. Analytical Separations in Open-Tubular Capillary Electrochromatography, Electrophoresis. 2003, 24, 3917-3934.
[117] Yeu, C.; Ding, G.; Tang, A. Application of Molecularly Imprinted Polymer Particles in Capillary Electrochromatography, Chinese J. Chromatogr. 2013, 31(1), 10-14.
[118] Blahova E.; Brandsteterova, E. Approaches in Sample Handling before HPLC Analysis of Complex Matrices, Chem. Pap. 2004, 58(5) 362-373.
[119] Schweitz, L.; Spégel P.; Nilsson, S. Approaches to Molecular Imprinting based Selectivity in Capillary Electrochromatography, Electrophoresis. 2001, 22, 4053-4063.
[120] Lee, W. C.; Cheng, C. H.; Pan, H. H.; Chung T. H.; Hwang, C. C. Chromatographic Characterization of Molecularly Imprinted Polymers, Anal. Bioanal. Chem. 2008, 390, 1101-1109.
[121] Vallano P. T.; Remcho, V. T. Highly Selective Separations by Capillary Electrochromatography: Molecular Imprint Polymer Sorbents, J. Chromatogr. A. 2000, 887, 125-135
[122] Haginaka, J. HPLC-based Bioseparations using Molecularly Imprinted Polymers Bioseparation 2002, 10, 337-351.
[123] Sellergren, B. Imprinted Chiral Stationary Phases in High-Performance Liquid Chromatography, J. Chromatogr. A 2001, 906, 227-252.
[124] Szumski M.; Grzywiński D.; Prus W.; Buszewski B.; Monolithic Molecularly Imprinted Polymeric Capillary Columns for Isolation of Aflatoxins, J Chromatogr A. 2014, 1364,163-170.
[125] Schweitz, L.; Spegel, P.; Nilsson, S.; Approaches to Molecular Imprinting Based Selectivity in Capillary Electrochromatography, Electrophoresis. 2001, 22, 4053-4063.
[126] Liu, Z.; Zheng, C.; Yan, C.; Gao, R. Molecularly Imprinted Polymers as a Tool for Separation in CEC, Electrophoresis. 2007, 28, 127-136.
[127] Maier, N. M.; Lindner, W. Chiral Recognition Applications of Molecularly Imprinted Polymers: a Critical Review, Anal. Bioanal. Chem. 2007, 389, 377-397.
[128] Huang, Y.; Liu, Z.; Zheng, C.; Gao, R. Recent Developments of Molecularly Imprinted Polymer in CEC, Electrophoresis. 2009, 30, 155-162.
[129] Zheng, C.; Huang, Y.; Liu, Z. Recent Developments and Applications of Molecularly Imprinted Monolithic Column for HPLC and CEC, J. Sep. Sci.. 2011, 34,1988-2002.
[130] Lammerhofer, M.; Gargano, A. Monoliths with Chiral Surface Functionalization for Enantioselective Capillary Electrochromatography, J. Pharm. Biomed. Anal. 2010, 53, 1091-1123.
[131] Vallano, P. T.; Remcho, V. T. Highly Selective Separations by Capillary Electrochromatography: Molecular Imprint Polymer Sorbents, J. Chromatogr. A. 2000, 887, 125-135.
[132] Esteban, A. M. Molecularly Imprinted Polymers: New Molecular Recognition Materials for Selective Solid-Phase Extraction of Organic Compounds, J. Anal. Chem. 2001, 370, 795-802.
[133] Baggiani, C.; Anfossi L.; Giovannoli, C. Solid Phase Extraction of Food Contaminants using Molecular Imprinted Polymers, Anal. Chim. Acta. 2007, 591, 29-39.
[134] Lanza F.; Sellergren, B. The Application of Molecular Imprinting Technology to Solid Phase Extraction, Chromatographia. 2001, 53, 599-611.
[135] He, C.; Long, Y.; Pan, J.; Li K.; Liu, F. Application of Molecularly Imprinted Polymers to Solid-Phase Extraction of Analytes from Real Samples, J. Biochem. Biophys. Methods. 2007, 70, 133-150.
[136] Wei S.; Mizaikoff, B. Recent Advances on Noncovalent Molecular Imprints for Affinity Separations, J. Sep. Sci. 2007, 30, 1794-1805.
[137] Lasäkov M.; Jandera, P. Molecularly Imprinted Polymers and their Application in Solid Phase Extraction, J. Sep. Sci. 2009, 32, 799-812.
[138] Turiel E.; Esteban, A. M. Molecularly Imprinted Polymers for Solid-phase Microextraction, J. Sep. Sci. 2009, 32, 3278-3284.
[139] Haginaka, J. Molecularly Imprinted Polymers as Affinity-based Separation Media for Sample Preparation, J. Sep. Sci. 2009, 32, 1548-1565.
[140] Yu J. C. C.; Lai, E. P. C. Molecularly Imprinted Polymers for Ochratoxin A Extraction and Analysis Toxins, 2010, 2, 1536-1553.
[141] Turiel E.; Esteban, A. M. Molecularly Imprinted Polymers for Sample Preparation: A Review, Anal. Chim. Acta. 668, 2010, 87-99.
[142] Batista A. D.; Martendal, E. New Sorbents for Extraction and Microextraction Techniques, J. Chromatogr. A. 2010, 1217, 2533-2542.
[143] Fontanals, N.; Marcé, R. M.; Borrull, F. Overview of the Novel Sorbents Available in Solid-phase Extraction to Improve the Capacity and Selectivity of Analytical Determinations, Contributions Sci. 2010, 6(2), 199-213.
[144] Bui B. T. S.; Haupt, K. Molecularly Imprinted Polymers: Synthetic Receptors in Bioanalysis, Anal. Bioanal. Chem. 2010, 398, 2481-2492.
[145] Aufartová, J.; Santana, C. M.; Ferrera, Z. S.; Rodríguez, J. J. S.; Novákováa L.; Solich P. Determination of Steroid Hormones in Biological and Environmental Samples using Green Microextraction Techniques: An Overview, Anal. Chim. Acta. 2011, 704, 33-46.
[146] Zhang, M.; Zeng, J.; Wang Y.; Chen, X. Developments and Trends of Molecularly Imprinted Solid-Phase Microextraction, J. Chromatogr. Sci. 2013, 51, 577-586.
[147] Yi, L. X.; Fang R.; Chen, G, H, Molecularly Imprinted Solid-Phase Extraction in the Analysis of Agrochemicals, J. Chromatogr. Sci. 2013, 51, 608-618.
[148] Zhang, H.; Ye L.; Mosbach, K. Non-covalent Molecular Imprinting with Emphasis on its Application in Separation and Drug Development, J. Mol. Recognit. 2006, 19, 248-259.
[149] Wulff G.; Knorr, K. Stoichiometric Noncovalent Interaction in Molecular Imprinting. Bioseparation. 2002, 10, 257-276.
[150] Lisichkin G. V.; Krutyakov, Y. A. Molecularly Imprinted Materials: Synthesis, Properties, Applications, Russian Chem. Rev. 2006, 75(10), 901-918.
[151] Salian V. D.; Byrne, M. E. Living Radical Polymerization and Molecular Imprinting: Improving Polymer Morphology in Imprinted Polymers, Macromol. Mater. Eng. 2013, 298, 379-390.
[152] Zhen, Y. Y.; Guang L. X.; She, X. B. Recent Advances in Molecular Imprinting Technology for the Deep Desulfurization of Fuel Oils, New Carbon Mater. 2014, 29(1), 1-14.
[153] Takeuchi, T.; Mukawa T.; Shinmori, H. Signaling Molecularly Imprinted Polymers: Molecular Recognition-Based Sensing Materials, Chem. Rec. 2005, 5, 263-275.
[154] Hussain, M.; Ultra-Sensitive Detection of Heparin via aPTT Using Plastic Antibodies on QCM-D Platform, RSC Adv. 2015, 5, 54963-54970. doi: 10.1039/C5RA08066E
[155] Fuchsa, Y.; Sopperab O.; Haupt, K. Photopolymerization and Photostructuring of Molecularly Imprinted Polymers for Sensor Applications - A review, Analytica Chimica Acta. 2012, 717, 7-20.
[156] Asanuma, H.; Hishiya T.; Komiyama, M. Tailor-Made Receptors by Molecular Imprinting, Adv. Mater. 2000, 12(14), 1019-1030.
[157] Guan, G.; Liu, B.; Wang Z.; Zhang, Z. Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors, Sensors. 2008, 8, 8291-8320.
[158] Irshad, M.; Iqbal, N.; Mujahid, A.; Afzal, A.; Hussain, T.; Sharif, A.; Ahmad E.; Athar, M. M. Molecularly Imprinted Nanomaterials for Sensor Applications, Nanomaterials. 2013, 3, 615-637.
[159] Oliveira, O. N.; Iost, J. R. M.; Siqueira, J. R.; Crespilho J. F. N.; Caseli, L. Challenges and Applications in Smart Devices Based on Molecular Recognition Appl. Mater. Interfaces 2014, 6, 14745-14766.
[160] Ding X.; Heiden, P. A. Recent Developments in Molecularly Imprinted Nanoparticles by Surface, Imprinting Techniques, Macromol. Mater. Eng. 2014, 299, 268-282.
[161] Peppas N. A.; Huang, Y. Polymers and Gels as Molecular Recognition Agents, Pharm. Res. 2002, 19(5), 578-587.
[162] Wei, S.; Jakusch M.; Mizaikoff, B. Capturing Molecules with Templated Materials -Analysis and Rational Design of Molecularly Imprinted Polymers Anal. Chim. Acta 2006, 578, 50-58.
[163] Nicholls, I. A.; Andersson, H. S.; Charlton, C.; Henschel, H.; Karlsson, B. C. G.; Karlsson, J. G.; Mahony, J. O.; Rosengren, A. M.; Rosengren K. J.; Wikman, S. Theoretical and Computational Strategies for Rational Molecularly Imprinted Polymer Design, Biosens. Bioelectron. 2009, 25, 543-552.
[164] Hu, J.; Mao, X.; Cao, S.; Yuan, X. Recognition of Proteins and Peptides: Rational Development of Molecular Imprinting Technology, Polym.Sci., Ser. A. 2010, 52(3) 328-339.
[165] Nicholls, I. A.; Andersson, H. S.; Golker, K.; Henschel, H.; Karlsson, B. C. G.; Olsson, G. D.; Rosengren, A. M.; Shoravi, S.; Suriyanarayanan, S.; Wiklander J. G.; Wikman, S. Rational Design of Biomimetic Molecularly Imprinted Materials: Theoretical and Computational Strategies for Guiding Nanoscale Structured Polymer Development, Anal. Bioanal. Chem. 2011, 400, 1771-1786.
[166] Levia, L.; Raima, V.; Srebnik, S. A Brief Review of Coarse‐grained and other Computational Studies of Molecularly Imprinted Polymers J. Mol. Recognit 2011, 24, 883-891.
[167] Whitcombe, M. J.; Chianella, I.; Larcombe, L.; Piletsky, S. A.; Noble, J.; Porterb R.; Horgan, A. The Rational Development of Molecularly Imprinted Polymer-based Sensors for Protein Detection, Chem. Soc. Rev. 2011, 40, 1547-1571.
[168] Yang, K.; Zhang, L.; Liang Z.; Zhang, Y. Protein-Imprinted Materials: Rational Design, Application and Challenges, Anal. Bioanal. Chem. 2012, 403, 2173-2183.
[169] Zheng, C.; Huang Y. P.; Liu, Z. S. Synthesis and Theoretical Study of Molecularly Imprinted Monoliths for HPLC, Anal. Bioanal. Chem. 2013, 405, 2147-2161.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.