International Journal of Advanced Materials Research
Articles Information
International Journal of Advanced Materials Research, Vol.2, No.4, Jul. 2016, Pub. Date: Jun. 1, 2016
Temperature Dependence of High-Order Expanded Anharmonic Correlated Debye Model Debye-Waller Factor of Metallic Copper
Pages: 52-58 Views: 1044 Downloads: 597
[01] Nguyen Bao Trung, Department of Physics, College of Science, VNU-Hanoi. 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
[02] Nguyen Van Hung, Department of Physics, College of Science, VNU-Hanoi. 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
[03] Ha Dang Khoa, School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam.
High-order expanded Debye-Waller factor presented in terms of cumulant expansion in X-ray Absorption Fine Structure (XAFS) of metallic copper, an fcc crystal, has been studied based on anharmonic correlated Debye model. Analytical expressions of dispersion relation, correlated Debye frequency and temperature and four first XAFS cumulants have been derived. Three-dimensional interaction is taken into account in the present one-dimensional model based on the anharmonic effective potential that includes contributions of near neighbors of absorber and backscattering atoms. Numerical results are compared to experiment and found to be in good agreement.
High-Order XAFS Cumulants, Effective Potential, Correlated Debye Model, Metallic Copper
[01] Crozier E. D.; J. J. Rehr J. J.; Ingalls R. X-ray Absorption. Edited by D. C. Koningsberger and R. Prins (Wiley, New York, 1988). Chap. 9.
[02] Vila F. D.; Rehr J. J.; Rossner H. H.; Krappe H. J. Theoretical x-ray absorption fine structure Debye-Waller factors. Phys. Rev. B 2007, 76, 014301.
[03] Hung N. V.; Tien T. S.; Duc N. B.; Vuong D. Q. High-order expanded XAFS Debye-Waller factors of hcp crystals based on classical anharmonic correlated Einstein model. Mod. Phys. Lett. B 2014, 28, 1450174.
[04] Hung N. V.; Rehr J. J. Anharmonic correlated Einstein model Debye-Waller factors. Phys. Rev. B 1997, 56, 43.
[05] Frenkel A. I.; Rehr J. J. Thermal expansion and x-ray absorption fine-structure cumulants. Phys. Rev. B 1993, 48, 585.
[06] Miyanaga T.; Fujikawa T. Quantum Statistical Approach to Debye-Waller Factor in EXAFS, EELS and ARXPS. III. Application of Debye and Einstein Approximation. J. Phys. Soc. Jpn. 1994, 63, 3683.
[07] Daniel M.; Pease D. M.; Hung N. V.; Budnick J. D. Local force constants of transition metal dopants in a nickel host: Comparison to Mossbauer studies. Phys. Rev. B 2004, 68, 134414.
[08] Pirog I. V.; Nedoseikina T. I.; Zarubin A. I.; Shuvaev A. T. Anharmonic pair potential study in face-centered cubic crystals. J. Phys.: Condens. Matter 2002, 14, 1825.
[09] Yokoyama T.; Sasukawa T.; Ohta T. Anharmonic Interatomic Potentials of Metals and Metal Bromides Determined by EXAFS. Jpn. J. Appl. Phys. 1989, 28, 1905.
[10] Fornasini P. and Grisenti R. On EXAFS Debye-Waller factor and recent advances. J. Synch. Rad. 2015, 22, 1242.
[11] Hung N. V.; Tien T. S.; Hung L. H.; Frahm R. R. Anharmonic Effective Potential, Local Force Constant and EXAFS of HCP Crystals: Theory and Comparison to Experiment. Int. J. Mod. Phys. B 2008, 22, 5155.
[12] Hung N. V.; Hung V. V.; Hieu H. K.; Frahm R. R. Pressure effects in Debye-Waller factors and in EXAFS. Physica B 2011, 406, 456.
[13] Hung N. V.; Thang C. S.; Toan C. T.; Hieu H. K. Temperature dependence of Debye-Waller factors of semiconductors. Vacuum 2014, 101, 63-66.
[14] Kittel C. Introduction to Solid State Physics (John-Wiley&Sons, Inc., New York, 1986), 6 th ed.
[15] Maradudin A. A. Dynamical Properties of Solids, ed. by G. K. Horton and A. A. Maradudin (North Holland, Amsterdam, 1974) Vol. 1, p. 1.
[16] Mahan G. D. Many-Particle Physics (Plenum, New York, 1990) 2 nd ed.
[17] Girifalco L. A.; Weizer W. G. Application of the Morse Potential Functions to Cubic Metals. Phys. Rev. 1959, 114, 687.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - 2017 American Institute of Science except certain content provided by third parties.