International Journal of Advanced Materials Research
Articles Information
International Journal of Advanced Materials Research, Vol.2, No.5, Sep. 2016, Pub. Date: Aug. 16, 2016
Synthesis and Production of Carbon Nanospheres Using Noncatalytic CVD Method
Pages: 86-91 Views: 1225 Downloads: 565
[01] Abdulqader D. Faisal, Applied Science Department, Applied Science Research Unit, University of Technology, Baghdad, Iraq.
[02] Ali A. Aljubouri, Applied Science Department, Applied Science Research Unit, University of Technology, Baghdad, Iraq.
Carbon nanospheres were successfully synthesized via noncatalytic chemical vapor deposition method. The product was synthesized from C2H2 as a precursor and N2 as a carrier gas at 650ºC for 1h using quartz tube inserted into a tube furnace. Two approaches of carbon nanospheres (CNSs) growth were demonstrated. The product revealed fluffy, spongy, black, and light weight carbon spheres (CSs) with regular shapes of 100-200 nm in diameter were investigated. Carbon spheres (CSs) were also grown on silicon (100). The carbon products were characterized by X-Ray diffraction (XRD), Raman spectroscopy, Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Fourier transform infrared (FT-IR) spectroscopy. The XRD results are confirmed by Raman analysis which reflects the presence of amorphous carbon within the structure. The very small crystallite size was calculated using Scherer’s formula compared with previous results which reflect the small number of atoms per lamellae and large interlayer spacing. The CNS's energy gap was calculated for a thin film of carbon powder and the value was 3.65eV.
Carbon Nanosphere, Non-catalytic CVD, Beads and Necklace –like Carbon Structures, Raman Spectroscopy, CNS's Energy Gap
[01] Yong W., Fabing S., Colin D. W., Jim Y. L., Xiu S. Z., Ind. Eng. Chem. Res., 47 (7), (2008) 2294–2300.
[02] Zhenhai W., Qiang W., Qian Z., Jinghong L., Electrochemistry Communications, 9(8) (2007) 1867–1872.
[03] Jing W., Zhongbo H., Jianxun X., Yuliang Z., NPG Asia Materials, 6, e84 (2014) 1-12.
[04] Tie Li, Jianfeng S., Shutong H., Na L., Mingxin Y., Applied Clay Science, 93–94, (2014) 48–55.
[05] Wojciech K., Krzysztof C., Xuecheng C., Ewa M., Chemical Engineering Journal, 228, (2013) 824–833.
[06] Stevens D. A., Dahn JR., Carbon, 43(1) (2005) 179-188.
[07] Ermete A., Appl. Catal. B: Environtal, 88 (1-2) (2009) 1-24.
[08] Karolina W., Xuecheng C., Krzysztof K., Jacek M., Ryszard J K., Ewa M., Nanoscale Research Letters, 7, (2012) 269-273.
[09] Gérrard E. J. P., Sridevi B., Monaliben S., Iafeta L., Derek F., Nanotechnology, Science and Applications, 5, (2012) 49–59.
[10] Ji B. J., Pil K., Wooyoung K., Jongsik K., Nam D. K., Jongheop Y., Current Applied Physics, 8 (6) (2008) 814–817.
[11] Yi Z. J., Chao G., Wen K. H., Yanqiu Z., Andrzej H., Michal B., Martin R., Chi Y. L., Steve A., Harold K., David R. M. W., Carbon, 43, (2005) 1944–1953.
[12] Ratchahat S., Viriya-empikul N., Faungnawakij K., Charinpanitkul T., Soottitantawat A., Sci. J. UBU, 1(2) (2010) 40-45.
[13] Chuyang C., Xudong S., Xuchuan J., Dun N., Aibing Y., Zhigang L., JiGuang L., Nanoscale Research Letters, 4, (2009) 971-976.
[14] Chandra S. S., Manish M. K., Ashutosh S., Marc M., Chemical Engineering Science, 64, (2009) 1536–1543.
[15] Chandra S S., Sandip P., Suman S., Ashutosh S., Venkataraghavan R., Bull. Mater. Sci., 32 (3) (2009) 239–246.
[16] Gilbert D. N., Ahmed A., Haviv G., Erik P., Christopher R. O., Tomer Z., Hart A. J., Doron A., Carl V. T., Carbon, 50 (11) (2012) 4002–4009.
[17] Kyotani T, Tsai L., Tomita A., Chem Mater, 7(8) (1995) 1427–1428.
[18] Kyotani T, Tsai L., Tomita A., Chem Mater, 8(8) (1996) 2109–2113.
[19] Hong-Li Z., Shu-He L., Feng, L., Shuo B, Chang L, Jun T., Hui-Ming C., Carbon, 44, (2006) 2212–2218.
[20] Okhyung L., Jaehun J., Seungkyun D., Sung-Soo K., Tae-Hwan N., Kab-Il K., Yun-Soo L., Metals and Materials International, 16 (4) (2010) 663-667.
[21] Serp P., Feurer R., Kalck P., Kihn Y, Faria J., Figueiredo J., Carbon, 39, (2001) 615–628.
[22] Ugarte D., Nature, 359, (1992)707-709.
[23] Inagaki M., Carbon, 35 (5), (1997)711-714.
[24] Mohammad A. H., Shahidul I., American Journal of Nanoscience and Nanotechnology, 1(2) (2013) 52-56.
[25] Lingjuan D., Gang Z., Jianfang W., Liping K., Zong-Huai L., Zupei Y., Zenglin W., Journal of power sources, 196 (24), (2011) 10782-10787.
[26] Ahmad M., Mohammad R. F., Mohammad R. M., World Journal of Nano Science and Engineering, 2 (2012)154-160.
[27] Manoj B., Kunjomana A. G., Int. J. Electrochem. Sci., 7 (2012) 3127–3134.
[28] Frusteri, C. Cannilla, K. Barbera, S. Perathoner, G. Centi, F. Frusteri, Carbon 59 (2013)269-307.
[29] Tuinstra F., Koenig J. L., J. Chem. Phys., 53 (1970) 1126–1130.
[30] Vivek D., Rao M. V., Prasad J. S., Garima M., Kyong X. R., Hyeon J. K., Dong H. j., Carbon letter, 15 (3)(2014) 198-202.
[31] Tauc J., Amorphous and liquid semiconductors, Plenum, London, 1974.
[32] Teo K. B. K, Ferrari A. C. Fanchini G., Rodil S. E, Yuan Tsai J. J. H., Laurenti E., Tagliaferro A., Robertson J., Milne W. J., Diamond and Related Materials 11 (2002) 1086-1090.
[33] Mani M., Gourav S., Singh K., Pandey O. P., Journal of Solid State Chemistry 232 (2015)108–117.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - 2017 American Institute of Science except certain content provided by third parties.