International Journal of Advanced Materials Research
Articles Information
International Journal of Advanced Materials Research, Vol.1, No.2, May 2015, Pub. Date: Apr. 22, 2015
Effect of Reversed Cyclic Stressing and Phase Transition on the Transient and Steady State Creep Behaviour of Al–22 wt% Ag Alloy
Pages: 15-24 Views: 907 Downloads: 452
Authors
[01] M. A. Mahmoud, Physics Department, Ain - Shams University, Heliopolis, Roxy, Cairo, Egypt.
Abstract
Static and completely reversed cyclic creep acceleration characteristics of Al – 22 wt% Ag alloy were investigated using a modified tensile testing machine. Different amplitudes of reversed cyclic stress (σrev) ranging from 7.2 to 10.2 MPa at different working temperatures ranging from 353 K to 413 K were performed. To get a relation between aging temperature and threshold stress (σth) for cyclic creep acceleration, aging temperatures ranged from 423 to 683 K were used. The transient creep and steady state creep parameters (n, β and έst) were calculated. Values of n, β and έst showed a dependence on aging temperature and were found to increase with increasing σrev as well as working temperature. Transmission electron microscopy (TEM) is used to investigate the microstructures formed in the aged samples. The results were explained in view of mode of interaction between the thermally induced structures during aging with moving dislocations induced by the static stress or dislocation structure induced by cyclic stress. The value of the steady state creep exponent depicts high dependence of the steady state creep stage on transient creep stage. Precipitate-dislocation interactions are suggested as the rate controlling mechanism for both transient and steady state creep stages.
Keywords
Creep, Cyclic Stress, Al - Ag Alloys, Dislocations, Phase Transformation
References
[01] W. J. Poole, N. Charros, Mater.Sci.Eng.A406 (2005) 300.
[02] M. A. Mahmoud,Phys. Stat. Sol.(a)186 (2001) 143.
[03] G. Dlubeck, G. wendrock, K. Pawelzyk, Phys. Stat. Sol. (a)140 (1993)311.
[04] A. Malik, B. Schonfeld, G. Kostorz, Z. Metallk 88(1997) 625.
[05] K.T. Moore, J.M. Howe, H.I. Aaronson, D.R. Veblen, Acta Mater. 50 (2002) 943.
[06] K. T. Moore, J. M. Howe, D. R. Veblen, Metall. Trans. A 33(2002) 1561.
[07] R. M. Aikin Jr, M.R. Plichta, Acta metal. mater. 38 (1990) 77.
[08] F. Lorenzo, C. Laird, Acta Metall. 32 (1984) 681.
[09] D. Shetty, M. Meshii, Metall. Trans. A 6(1975) 349.
[10] T. Jaglinski, R. Lakes, Trans. ASME 126 (2004) 378.
[11] W. Blum, A. Rosen, A. Cegielska, J. I. Martin, Acta Metall.37 (1989)2439.
[12] G. Graiss, M. A. Mahmoud, A. H. Ashry, A. M. Abdelkhalekh, A. F. Abd El-Rehim, Phys. Stat. Sol.(a) 201 (2004)2295.
[13] F. Abd El-salam, A. M. Abdelkhalekh, R. H. Nada, PhysicaB388 (2007) 219.
[14] A. F. Abd El-Rehim, M. A. Mahmoud, Mater. Sci. Technol. 27 (2011) 44.
[15] A.H. Meleka, A. V. Evershed, J. Inst. Metals 88 (1960) 411.
[16] J. N. Greenwood, Proc. ASTM 49 (1949)834.
[17] G. A. Webster, B. J. Picaiceyi, Trans. Am. Soc. Metals 59 (1966)847.
[18] M. A. Mahmoud, A. F. Abd El-Rehim, J.Mater.Sci.45 (2010)1579.
[19] A. F. Abd El-Rehim, Ph. D. Thesis, Ain Shams Univ. Cairo, Egypt 2004p.68.
[20] A. F. Abd El-Rehim, J.Mater.Sci.43 (2008)1444.
[21] M.A. Mahmoud, Physica B 304 (2001)456.
[22] G. H. Deaf, S.B. Yossef, M. A. Mahmoud, Phys. Stat. Sol. (a)158 (1996) 79.
[23] G. H. Deaf, S.B. Yossef, M.A. Mahmoud, Phys. Stat. Sol. (a) 168 (1998) 389.
[24] T. Kanadani, A. Umada, Phys. Stat. Sol. (a)148 (1995)K23.
[25] T. Kanadani, A. Umada, Phys. Stat. Sol. (a)151 (1995)K29.
[26] R.H. Nada, Mater. Sci. Eng. A528 (2011)1233.
[27] G. Graiss, M. A. Mahmoud, Fizika A 9 (2000) 137.
[28] G. Graiss, M. A. Mahmoud, J. Mater. Sci.36 (2001)1507.
[29] G. H. Deaf, S.B. Yossef, M.A. Mahmoud, G. Graiss, M.A. Kenawy, Phys. Stat. Sol. (a)158 (1996)471.
[30] M. A. Mahmoud, G.Graiss, J. Mater. Sci. 37 (2002) 2215.
[31] K. K. Sagoe-Crentsil, L. C. Brown, Phil. Mag. A 61 (1990) 451.
[32] F. Abd El-salam, M. A. Mahmoud, A. M. Abdelkhalekh, R. H. Nada, Physica B. 324(2002) 110.
[33] G. Graiss, M. A. Mahmoud, Cryst. Res. Technol.35 (2000)95.
[34] K. K. Sagoe-Crentsil, L. C. Brown, Phil. Mag. A 63 (1991) 477.
[35] K. T. Moore, J. M. Howe, Acta Mater. 48 (2000) 4083.
[36] N. Nabarro, J. M. Howe, Phil. Mag. A 63 (1991) 645.
[37] M. A. Mahmoud, A. H. Ashry, A. M. Abdelkhalekh, A. F. Abd El-Rehim, G. Graiss, Cryst.Res.Technol.40 (2005)665.
[38] D. J. Morrison, J. C. Moosbrugger, Ins. J. Fatigue 19 (1997) 551.
[39] C. E. Feltner, Tech. Document. Rep. No. RTD-TDR 63 (1963) 4169.
[40] C. Calabrese, C. Laird, Mater. Sci.Eng. A 13 (1974)141.
[41] M.S uery, B. B. Baudelet, Phil. Mag. 41 (1980) 41.
[42] F. Abd El-salam, A. M. Abdelkhalekh, R. H. Nada, A. Fawzy, Mater. Characterization59 (2008) 9.
[43] A. F. Abd El-Rehim, M.A. Mahmoud, J. Mater. Sci. 48 (2013) 2059.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - 2017 American Institute of Science except certain content provided by third parties.