International Journal of Advanced Materials Research
Articles Information
International Journal of Advanced Materials Research, Vol.5, No.2, Jun. 2019, Pub. Date: Sep. 17, 2019
Optical Properties of Nano-structured Silica Coated Silver Particles
Pages: 38-45 Views: 249 Downloads: 140
[01] Abel Sambou, Laboratory of Physics Solid and Sciences of Materials, Cheikh Anta Diop University, Dakar, Senegal.
[02] Louis Gomis, Laboratory of Plasmas Physics and Interdisciplinary Research, Cheikh Anta Diop University, Dakar, Senegal.
[03] Kharouna Talla, Laboratory of Physics Solid and Sciences of Materials, Cheikh Anta Diop University, Dakar, Senegal.
[04] Alle Dioum, Laboratory of Physics Solid and Sciences of Materials, Cheikh Anta Diop University, Dakar, Senegal.
[05] Aboubaker Chedikh Beye, Laboratory of Physics Solid and Sciences of Materials, Cheikh Anta Diop University, Dakar, Senegal.
Resonance frequency of silver nanoshells was investigated by numerical calculations based on the Drude correlation model to the Mie approximation. In a system of Ag atom coated with silica material. The optical properties of nanostructured architectures are highly sensitive to their composition, structures, dimensions, geometries and embedding mediums. Then the simulated absorption spectra of single-component metal nanoparticles and Ag@SiO 2 nanoshell were calculated using both Mie and Drude model. We describe the benefits of plasmon resonance shaping by means of a simulation consisting in optimizing the plasmon frequency of multifunctional hybrid nanomaterials of the core/shell type. The discussion concerns the maximum absorption of the Ag/SiO2 system identified at about 430 nm if the material is immersed in water. In the second phase, we modulated the SiO2/Ag ratio to adapt it to the biological window. Thus, the various tests allowed us to conclude that to satisfy the question, the ratio of core radius (≈SiO2) to shell thickness (≈Ag) must be significantly greater than 5. This has resulted in considerable insight concerning the variation of plasmon wavelength with nanoparticle size, shape and dielectric environment, as well as the use of these particles for optical sensing applications.
Drude Model, Mie Theory, Silver Nanoparticle, Silver Nanoshell, Surface Plasmon Resonance, Silica
[01] Franke M. E., Koplin T. J., Simon U. (2016) “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter”, Small, 2, 36.
[02] Wilson R. (2008) “The use of gold nanoparticles in diagnostics and detection”, Chem. Soc. Rev., 37, 2028.
[03] Corma A., Garcia H. (2008) “Supported gold nanoparticles as catalysts for organic reactions”, Chem. Soc. Rev., 37, 2096.
[04] Pina C. D., Falletta E., Prati L., Rossi M. (2008) “Selective oxidation using gold” Chem. Soc. Rev, 37, 2077.
[05] Schmid G., Simon U. (2005) “Gold nanoparticles: assembly and electrical properties in 1–3 dimensions”, Chem. Commun., 6, 697.
[06] Khodashenas B., Ghorbani H. R. (2015) “Synthesis of silver nanoparticles with different shapes” Arabian Journal of Chemistry,
[07] Soulé S., Allouche J., Dupin J. C, Martinez H. (2013) “Design of Ag–Au nanoshell core/mesoporous oriented silica shell nanoparticles through a sol–gel surfactant templating method”, Microporous and Mesoporous Materials, 171, 72.
[08] Eustis S., El-Sayed M. A. (2006) “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes”, Chem. Soc. Rev., 35, 209.
[09] Schröder K. and Csáki A. (2011) SPIE Newsroom. DOI: 10.1117/2.1201105.003692.
[10] Rayford II C. E., Schatz G. and Shuford K. (2005) Spring Nanoscap, 2, 27.
[11] Zhu J., Wang Y., Huang L. (2005) Materials Chemistry and Physics, 93, 383.
[12] Tréguer-Delapierre. M, Majimel J., Mornet S., Duguet E., Ravaine S. (2008) Gold Bulletin, 41/2, 195.
[13] Mie M. (1908), Ann. Phys., 330, 330.
[14] Cao J., Sun T., Grattan K. T. V. (2014) “Gold nanorod-based localized surface plasmon resonance biosensors: A review, Sensors and Actuators”, B: Chemical, 195, 332.
[15] Coronado E. A, Encina E. R and Stefani F. D (2011), Nanoscale, 3, 4042.
[16] Lee C. J, Karim M. R, Vasudevan T., Kim H. J, Raushan K., Jung M. J, Kim D. Y and Lee M. S. (2010) “A Comparison Method of Silver Nanoparticles Prepared by the Gamma Irradiation and in situ Reduction Methods”, Bull. Korean Chem. Soc., 31, 1993.
[17] Liu R., Teo W., Tan S., Feng H., Padmanabhan P. and Xing B.(2010) “Metallic nanoparticles bioassay for Enterobacter cloacae P99 b-lactamase activity and inhibitor screening”, Analyst, 135, 1031.
[18] Stoleru V. G and Towe E. (2004) “Optical properties of nanometer-sized gold spheres and rods embedded in anodic alumina matrices”, Applied physics letters, 85, 5152.
[19] Hu M., J. Chen J., Li Z. Y, Au L., Hartland G. V, Li X., Marquez M. and Xia Y. (2006) “Gold nanostructures: engineering their plasmonic properties for biomedical applications”, Chem. Soc. Rev., 35, 1084.
[20] Wu C., Yu C., Chu M. (2011) “A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy” International Journal of Nanomedicine, 6, 807.
[21] Rasch M. R, Sokolov K. V., Korgel B. A. (2009) “Limitations on the Optical Tunability of Small Diameter Gold Nanoshells”, Langmuir, 25, 11777.
[22] Kim J., Park S., Lee J. E, Jin S. M, Lee J. H, Lee I. S, Yang I, Kim J. S, Kim S. K, Cho M. H, Hyeon T. (2006) “Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy”, Angew. Chem. Int. Edit., 45, 7754.
[23] Choi J., Yang J., Jang E., Suh J. S., Huh Y. M., Lee K. and Haam S. (2011) “Gold Nanostructures as Photothermal Therapy Agent for Cancer”, Anti-Cancer Agents in Medicinal Chemistry, 11, 1.
[24] Dees C., Harkins J., Petersen M. G., Fisher W. G., Wachter E. A.(2002) “Treatment of Murine Cutaneous Melanoma with Near Infrared Light”, Photochem. Photobiol., 75, 296.
[25] Hussain S., Pal A. K. (2008) “Incorporation of nanocrystalline silver on carbon nanotubes by electrodeposition technique” Mater. Lett., 62, 1874.
[26] Moores M. and Goettmann F. (2006) “The plasmon band in noble metal nanoparticles: an introduction to theory and applications”, New J. Chem., 30, 1121.
[27] Noguez C. (2007) “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment”, J. Phys. Chem. C 111, 3806.
[28] Johnson P. B and Christy R. W. (1972), Physical Review B, 6, 4370.
[29] Cooper B. R, Ehrenreich H. and Philipp H. R. (1965), Phys. Re, 138, 494.
[30] Berthier S. and Lafait J. (1986), J. Physique, 47, 249.
[31] Tuersun P. (2016) “Simulated localized surface plasmon spectra of single gold and silvernanobars”, Optik, 127, 3466.
[32] Ehrenreich H. and Philipp H. R. (1962), Phys. Rev., 128, 1622.
[33] Weng G., Li J., Zhu J. and Zhao J. (2010) “Colloids and Surfaces A”, Physicochem. Eng. Aspects, 369, 253.
[34] Palik E. “Handbook of Optical Constats of Solids Vol I”, Academic Press, Orlando, pp759.
[35] Sun Y., Xia Y. (2003) The Analyst, 128, 686.
[36] Sambou A., Ngom B. D., Gomis L., Beye A. C. (2016) “Turnability of the Plasmonic Response of the Gold Nanoparticles in Infrared Region”, American Journal of Nanomaterials, 4, 63.
[37] Sambou A, Tall P. D, Talla Kh., Sakho O., Ngom B. D, Beye A. C. (2017) “Control of the Surface Plasmon Resonance of Two Configurations of Nanoparticles: Simple Gold Nanorod and Gold/Silica Core/Shell”, Nanoscience and Nanotechnology Research, 4, 1.
[38] Chaudhuri R. G. and Paria S. (2012), Chemical Reviews, 112, 2373.
[39] Zhang H., Dunphy D. R., Jiang X., Meng H., Sun B., Tarn D., Xue M., Wang X., Ling S., Ji Z., Li R., Gracia F. L., Yang J., Kirk M. L., Xia T., Zink J. L., Nel A., Brinker C. J. (2012) JAM Chem Soc., 134, 15790.
[40] Cottancin E., Celep G., Lermé J., Pellarin M., Huntzinger J. R, Vialle J. L, Broyer M. (2006) Theor Chem Acc, 116, 514.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.