International Journal of Bioinformatics and Biomedical Engineering
Articles Information
International Journal of Bioinformatics and Biomedical Engineering, Vol.1, No.1, Jul. 2015, Pub. Date: Jun. 17, 2015
Malfunction of Agglutination Test to Identify Methicillin-Resistant Staphylococcus aureus Strains (MRSA)
Pages: 1-6 Views: 942 Downloads: 603
[01] Kumurya A. S., Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano, Nigeria.
Background: Most routine laboratory detection of Staphylococcus aureus isolates is based on rapid agglutination test systems. Failure of agglutination assays to identify methicillin-resistant S. aureus strains (MRSA) has been demonstrated. Objectives: The aim of this study was to evaluate the sensitivity and specificity of MRSA detection by agglutination test system using MastalexTM MRSA kit (Mast diagnostics, UK). The test kits used in this study have been tested for this purpose before. Methods: As determined by Polymerase chain reaction, 100MRSA strains staphylococci were included. Species identification and determination of susceptibility patterns were performed using colony morphology, Gram stain, catalase testing, tube coagulase testing, DNAase testing, mannitol fermentation, susceptibility testing towards oxacillin, and PCR of the mecA gene. Results: Among the 100 methicillin resistant Staphylococcus aureus isolates tested oxacillin disc diffusion and latex agglutination technique, PCR of the mecA gene confirmed the identification of only 5 (0.5%) MRSA strains. Sensitivity of the agglutination tests ranged from 82•7 to 100•0 % for MRSA strains and 92•8 to 100•0 % for MSSA strains, respectively. Specificity of the test systems ranged from 91•3 to 99•1 %. None of the six agglutination assays produced correct reactions for all staphylococci tested. For the other tests kits, sensitivity of MRSA detection was lower than for MSSA isolates. Ninety five (22.5%) and fifty seven (13.5%) of the 423 MRSA isolates did not grow on Oxoid Mannitol Salt Agar (MSA) and Mast MSA media without oxacillin, respectively. All the 423 MRSA isolates grew on oxoid blood agar with or without oxacillin. Conclusion: Depending upon the local MRSA prevalence and the parameter of interest (sensitivity or specificity), these test systems may be useful for routine diagnostic purposes.
Agglutination, MRSA, Sensitivity, Specificity, PCR
[01] Aldridge, K. E., Kogos, C., Sanders, C. V. & Marier, R. L. (1984). Comparison of rapid identification assays for Staphylococcus aureus. J Clin Microbiol 19: 703–704.
[02] Bannerman, T. L. (2003). Staphylococcus, micrococcus, and other catalase-positive cocci that grow aerobically. In Manual of Clinical Microbiology, pp. 384–404. Edited by P. R. Murray, E. J. Baron, J. H. Jorgensen, M. A. Pfaller & R. H. Yolken. Washington, DC: American Society for Microbiology.
[03] Bannerman, T. L., Hancock, G. A., Tenover, F. C. & Miller, J. M. (1995). Pulsed-field gel electrophoresis as a replacement for bacteriophage typing of Staphylococcus aureus. J Clin Microbiol 33: 551–555.
[04] Brakstad, O. G., Tveten, Y., Nato, F. & Fournier, J. M. (1993). Comparison of various methods and reagents for species identification of Staphylococcus aureus positive or negative for the mecA gene. APMIS 101: 651–654.
[05] Cavassini, M., Wenger, A., Jaton, K., Blanc, D. S. & Bille, J. (1999). Evaluation of MRSA-Screen, a simple anti-PBP 2a slide latex agglutination kit, for rapid detection of methicillin resistance in Staphylococcus aureus. J Clin Microbiol 37: 1591–1594.
[06] Chu, G., Vollrath, D. & Davis, R. W. (1986). Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234: 1582–1585.
[07] Cosgrove, S. E., Sakoulas, G., Perencevich, E. N., Schwaber, M. J., Karchmer, A. W. & Carmeli, Y. (2003). Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 36: 53–59.
[08] Croize, J., Gialanella, P., Monnet, D., Okada, J., Orsi, A., Voss, A. & Merlin, S. (1993). Improved identification of Staphylococcus aureus using a new agglutination test. Results of an international study. APMIS 101: 487–491.
[09] Davies, S. (1997). Detection of methicillin-resistant Staphylococcus aureus: the evaluation of rapid agglutination methods. Br J Biomed Sci 54: 13–15.
[10] Emori, T. G. & Gaynes, R. P. (1993). An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev 6: 428–442.
[11] Essers, L. & Radebold, K. (1980). Rapid and reliable identification of Staphylococcus aureus by a latex agglutination test. J Clin Microbiol 12: 641–643.
[12] Fournier, J. M., Bouvet, A., Boutonnier, A., Audurier, A., Goldstein, F., Pierre, J., Bure, A., Lebrun, L. & Hochkeppel, H. K. (1987). Predominance of capsular polysaccharide type 5 among oxacillin-resistant Staphylococcus aureus. J Clin Microbiol 25: 1932–1933.
[13] Fournier, J. M., Boutonnier, A. & Bouvet, A. (1989). Staphylococcus aureus strains which are not identified by rapid agglutination methods are of capsular serotype 5. J Clin Microbiol 27: 1372–1374.
[14] Fournier, J. M., Bouvet, A., Mathieu, D. & 8 other authors (1993). New latex reagent using monoclonal antibodies to capsular polysaccharide for reliable identification of both oxacillin-susceptible and oxacillin-resistant Staphylococcus aureus. J Clin Microbiol 31: 1342–1344.
[15] Goh, S. H., Byrne, S. K., Zhang, J. L. & Chow, A. W. (1992). Molecular typing of Staphylococcus aureus on the basis of coagulase gene polymorphisms. J Clin Microbiol 30: 1642–1645.
[16] Gupta, H., McKinnon, N., Louie, L., Louie, M. & Simor, A. E. (1998). Comparison of six rapid agglutination tests for the identification of Staphylococcus aureus, including methicillin-resistant strains. Diagn Microbiol Infect Dis 31: 333–336.
[17] Kampf, G., Weist, K., Swidsinski, S., Kegel, M. & Ruden, H. (1997). Comparison of screening methods to identify methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 16: 301–307.
[18] Kreiswirth, B., Kornblum, J., Arbeit, R. D., Eisner, W., Maslow, J. N., McGeer, A., Low, D. E. & Novick, R. P. (1993). Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science 259: 227–230.
[19] Kuusela, P., Hilden, P., Savolainen, K., Vuento, M., Lyytikainen, O. & Vuopio-Varkila, J. (1994). Rapid detection of methicillin-resistant Staphylococcus aureus strains not identified by slide agglutination tests. J Clin Microbiol 32: 143–147.
[20] Lairscey, R. & Buck, G. E. (1987). Performance of four slide agglutination methods for identification of Staphylococcus aureus when testing methicillin-resistant staphylococci. J Clin Microbiol 25: 181–182.
[21] Louie L, Matsumura SO, Choi E, Louie M, Simor AE (2000).Evaluation of three rapid methods for detection of methicillin resistance in Staphylococcus aureus. J ClinMicrobiol38: 2170-73.
[22] Luijendijk, A., van Belkum, A., Verbrugh, H. & Kluytmans, J. (1996). Comparison of five tests for identification of Staphylococcus aureus from clinical samples. J Clin Microbiol 34: 2267–2269.
[23] Maslow, J. N., Slutsky, A. M. & Arbeit, R. D. (1993). Application of pulsed field gel electrophoresis to molecular epidemiology. In Diagnostic Molecular Microbiology, Principles and Applications, pp. 563–572. Edited by D. H. Persing. Washington, DC: American Society for Microbiology.
[24] Menzies, R. E. (1977). Comparison of coagulase, deoxyribonuclease (DNase), and heat-stable nuclease tests for identification of Staphylococcus aureus. J Clin Pathol 30: 606–608.
[25] Mohammad, R., Mahmood, Y. and Au, F. (2006). Comparison of Different Laboratory Methods for Detection of MRSA. Pakistan Journal of Medical Sciences. 22(4):442-445.
[26] Murakami, K., Minamide, W., Wada, K., Nakamura, E., Teraoka, H. & Watanabe, S. (1991). Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J Clin Microbiol 29: 2240–2244.
[27] Muto, C. A., Jernigan, J. A., Ostrowsky, B. E., Richet, H. M., Jarvis, W. R., Boyce, J. M. & Farr, B. M. (2003). SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol 24: 362–386.
[28] Personne, P., Bes, M., Lina, G., Vandenesch, F., Brun, Y. & Etienne, J. (1997). Comparative performances of six agglutination kits assessed by using typical and atypical strains of Staphylococcus aureus. J Clin Microbiol 35: 1138–1140.
[29] Piper, J., Hadfield, T., McCleskey, F., Evans, M., Friedstrom, S., Lauderdale, P. & Winn, R. (1988). Efficacies of rapid agglutination tests for identification of methicillin-resistant staphylococcal strains as Staphylococcus aureus. J Clin Microbiol 26, 1907–1909.
[30] Ruane, P. J., Morgan, M. A., Citron, D. M. & Mulligan, M. E. (1986). Failure of rapid agglutination methods to detect oxacillin-resistant Staphylococcus aureus. J Clin Microbiol 24: 490–492.
[31] Saulnier, P., Bourneix, C., Prevost, G. & Andremont, A. (1993). Random amplified polymorphic DNA assay is less discriminant than pulsed-field gel electrophoresis for typing strains of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 31: 982–985.
[32] Schwarzkopf, A. (1995). Coagulase gene polymorphism in Staphylococcus aureus – a new epidemiological marker. Immun Infekt 23: 9–14 (in German).
[33] Struelens, M. J., Deplano, A., Godard, C., Maes, N. & Serruys, E. (1992). Epidemiologic typing and delineation of genetic relatedness of methicillin-resistant Staphylococcus aureus by macrorestriction analysis of genomic DNA by using pulsed-field gel electrophoresis. J Clin Microbiol 30: 2599–2605.
[34] Summers, W. C., Brookings, E. S. & Waites, K. B. (1998). Identification of oxacillin-susceptible and oxacillin-resistant Staphylococcus aureus using commercial latex agglutination tests. Diagn Microbiol Infect Dis 30: 131–134.
[35] Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33: 2233–2239.
[36] Tiemersma, E. W., Bronzwaer, S. L., Lyytikainen, O., Degener, J. E., Schrijnemakers, P., Bruinsma, N., Monen, J., Witte, W. & Grundman, H. (2004). Methicillin-resistant Staphylococcus aureus in Europe, 1999–2002. European Antimicrobial Resistance Surveillance System. Emerg Infect Dis 10: 1627–1634.
[37] Tu, K. K. & Palutke, W. A. (1976). Isolation and characterization of a catalase-negative strain of Staphylococcus aureus. J Clin Microbiol 3: 77–78.
[38] Tveten, Y. (1995). Evaluation of new agglutination test for identification of oxacillin-susceptible and oxacillin-resistant Staphylococcus aureus. J Clin Microbiol 33: 1333–1334.
[39] Valentine, C. R., Yandle, S. H., Marsik, F. J., Ebright, J. R. & Dawson, M. S. (1988). Evaluation of the variety of plasmid profiles in S. epidermidis isolates from hospital patients and staff. Infect Control Hosp Epidemiol 9: 441–446.
[40] van Griethuysen, A., Bes, M., Etienne, J., Zbinden, R. & Kluytmans, J. (2001). International multicenter evaluation of latex agglutination tests for identification of Staphylococcus aureus. J Clin Microbiol 39: 86–89.
[41] Wallet, F., Roussel-Delvallez, M. & Courcol, R. J. (1996). Choice of a routine method for detecting methicillin-resistance in staphylococci. J Antimicrob Chemother 37: 901–909.
[42] Wichelhaus, T. A., Kern, S., Schafer, V., Brade, V. & Hunfeld, K. P. (1999). Evaluation of modern agglutination tests for identification of methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 18: 756–758.
[43] Wilkerson, M., McAllister, S., Miller, J. M., Heiter, B. J. & Bourbeau, P. P. (1997). Comparison of five agglutination tests for identification of Staphylococcus aureus. J Clin Microbiol 35: 148–151.
[44] Winblad, S. & Ericson, C. (1973). Sensitized sheep red cells as a reactant for Staphylococcus aureus protein A. Methodology and epidemiology with special reference to weakly reacting methicillin-resistant strains. Acta Pathol Microbiol Scand [B] Microbiol Immunol 81: 150–156.
[45] Witte, W. & Grimm, H. (1992). Occurrence of quinolone resistance in Staphylococcus aureus from nosocomial infection. Epidemiol Infect 109: 413–421.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - 2017 American Institute of Science except certain content provided by third parties.