International Journal of Biomedical and Clinical Sciences
Articles Information
International Journal of Biomedical and Clinical Sciences, Vol.5, No.1, Mar. 2020, Pub. Date: Feb. 20, 2020
Antibacterial Activity of Three Validated Antisickling Plant Species from the Great Apes Pharmacopoeia in Congo-Kinshasa
Pages: 33-40 Views: 1285 Downloads: 278
Authors
[01] Tania Bishola Tshitenge, Department of Biology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo; Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.
[02] Koto-te-Nyiwa Ngbolua, Department of Biology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo; Ubangi-BioXplore Project, University of Gbado-Lite, Gbado-Lite, Democratic Republic of the Congo; Department of Environment Management and Geography, Superior Pedagogical Institute of Abumombazi, Abumombazi, Democratic Republic of Congo.
[03] Colette Masengo Ashande, Ubangi-BioXplore Project, University of Gbado-Lite, Gbado-Lite, Democratic Republic of the Congo.
[04] Benjamin Gbolo Zoawe, Department of Biology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo; Ubangi-BioXplore Project, University of Gbado-Lite, Gbado-Lite, Democratic Republic of the Congo.
[05] Gédéon Ngiala Bongo, Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.
[06] Damien Sha Tshibey Tshibangu, Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.
[07] Dorothea Dinangayi Tshilanda, Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.
[08] Mudogo Virima, Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.
[09] Pius Tshimankinda Mpiana, Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.
Abstract
Sickle cell disease (SCD) is a hemoglobinopathy characterized by the presence in the blood of erythrocytes containing hemoglobin S. Surprisingly, the geographic distribution of SCD is superposed with that of the malaria which is also a haemolytic disease (like SCD) controlled by the great apes through their diet essentially vegetarian. Recent findings revealed that the plant species like Carapa procera, Garcinia punctata and Pentaclethra macrophylla belonging to non-human pharmacopoeia possess anti-sickle cell anaemia. In addition, many studies in sickle cell endemic areas indicate that the frequency of bacterial infections in SCD is high, especially in children under five years of age. The aim of the present study was to assess the antibacterial activity of the barks of C. procera, G. punctata and P. macrophylla in order to later use the bioactive fractions as an adjuvant of penicillin and use it as a starting point for a galenic formulation. This study shows that bacteriostatic activity was observed with all extracts on Staphylococcus aureus resistant to methicillin (G. punctata: MIC ≤ 62.5 µg/mL; C. procera and P. macrophylla: MIC ≤ 125 µg/mL) while several fractions and extracts revealed bactericidal activity on Escherichia coli (C. procera and G. punctata: R = MBC/MIC ≤ 2). The total phenolic acid extracts of G. punctata showed better bacterial activity (MIC=31.25 µg/mL; MBC= 62.5 µg/mL; R=2). It is therefore desirable to test the combination of extracts from these different plants with conventional antibiotics including penicillin using salmonella and streptococci as models of microbes closely associated to sickle cell disease.
Keywords
Sickle Cell Disease, Bacterial Infection, Adjuvant, Medicinal Plants, Bioactivity, Antibiotics
References
[01] Girot R, Begué P, Galacteros F, 2003. La drépanocytose. Editions John LIBBEY Eurotext, Paris: France.
[02] Ngbolua KN, Djolu DR, 2019. Étude pharmaco-biologique de Sarcocephalus latifolius (Rubiaceae): Plante anti-drépanocytaire de Tradition en République démocratique du Congo. Editions Universitaires Européennes, Riga: Latvia. ISBN: 978-613-8-46013-8.
[03] Ngbolua KN, Mpiana PT, Mudogo V, 2019a. Pharmacopée Traditionnelle et Lutte contre la Drépanocytose: Méthodes de sélection et d’évaluation de l’activité des plantes médicinales. Editions Universitaires Européennes, Riga: Latvia. ISBN: 978-613-9-51486-1.
[04] Ngbolua KN, Mpiana PT, Mudogo V, 2019b. Études chimique et pharmacologique de Drepanoalpha: Puissant complément alimentaire anti-drépanocytaire développé en République démocratique du Congo. Editions Universitaires Européennes, Riga: Latvia. ISBN: 978-613-8-46436-5.
[05] Ngbolua KN, Inkoto LC, Masengo AC, 2019c. Criblage phytochimique et biologique de trois taxons végétaux traditionnellement utilisés contre la drépanocytose en République démocratique du Congo. Editions Universitaires Européennes, Riga: Latvia. ISBN: 978-613-8-43234-0.
[06] Ngbolua KN, 2019. Evaluation de l’activité anti-drépanocytaire et antipaludique de quelques taxons végétaux de la République démocratique du Congo et de Madagascar. Editions Universitaires Européennes, Riga: Latvia. ISBN: 978-613-8-46359-7.
[07] Mpiana PT, Tshibangu DST, Shetonde OM, Ngbolua KN, 2007. In vitro antidrepanocytary activity (anti-sickle cell anaemia) of some Congolese plants. Phytomedicine 14: 192-195.
[08] Ngunde-te-Ngunde S, Lengbiye EM, Tshidibi DJ, Kengo VF, Djolu DR, Masengo AC, Gbolo BZ, Iteku BJ, Mpiana PT, Ngbolua KN, 2019. Antisickling and Antibacterial Activites of Anthocleista schweinfurthii Gilg. (Gentianaceae) from Non-human Primates Pharmacopoeia in Democratic Republic of the Congo. Budapest International Research in Exact Sciences 1 (3): 14-20.
[09] Labie D, Elion J, 2014. Sickle cell disease: Pneumococcus escapes prevention and adapts to the disease. Consequence on vaccine design. Med Sci (Paris) 30: 946-948.
[10] Douamba S, Nagalo K, Tamini L, Traoré I, Madibèlè K, Fla K, Diarra Yé, 2017. Syndromes drépanocytaires majeurs et infections associées chez l’enfant au Burkina Faso. Pan Afr Med J. 26: 7. doi: 10.11604/pamj.2017.26.7.9971.
[11] Donkor ES, Foster-Nyarko E, Enweronu-Laryea CC, 2013. Relationship between antibiotic resistance and sickle cell anemia: preliminary evidence from a pediatric carriage study in Ghana. Infect Drug Resist. 6: 71–77. doi: 10.2147/IDR.S40062.
[12] Dayie NTKD, Tetteh-Ocloo G, Appiah-Korang L, Olayemi E, Slotved HC, Lartey M, Donkor ES, 2019. Pneumococcal carriage among sickle cell disease patients in Accra, Ghana: Risk factors, serotypes and antibiotic resistance. PLOS ONE 14 (1): e0211838. https://doi.org/10.1371/journal.pone.0211838 View correction.
[13] Worthington RJ, Melander C, 2013. Combination Approaches to Combat Multi-Drug Resistant Bacteria. Trends Biotechnol. 31 (3): 177–184. doi: 10.1016/j.tibtech.2012.12.006.
[14] Catteau L, Reichmann NT, Olson J, Pinho MG, Nizet V, Van Bambeke F, Quetin-Leclercq J, 2017. Synergy between Ursolic and Oleanolic Acids from Vitellaria paradoxa Leaf Extract and Lactams against Methicillin-Resistant Staphylococcus aureus: In Vitro and In Vivo Activity and Underlying Mechanisms. Molecules 22: 2245. doi: 10.3390/molecules22122245.
[15] Cowan MM, 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564-582.
[16] Ngbolua KN, Bishola TT, Mpiana PT et al., 2014a. In vitro antisickling and free radical scavenging activities of Pentaclethra macrophylla Benth. (Fabaceae). J of Advancement in Medical and Life Sciences V1I2. DOI: 10.15297/JALS.V1I2.03.
[17] Ngbolua KN, Bishola TT, Mpiana PT et al., 2014b. Ethno-pharmacological survey, in vitro antisickling and free radical scavenging activities of Carapa procera DC. stem bark (Meliaceae). Nova Journal of Medical and Biological Sciences 2 (2): 01-14.
[18] Ngbolua KN, Bishola TT, Mpiana PT et al., 2014c. Ethno-botanical survey, in vitro antisickling and free radical scavenging activities of Garcinia punctate Oliv. (Clusiaceae). Journal of Advanced Botany & Zoology V1I2. DOI: 10.15297/JABZ.V1I2.04.
[19] Bruneton J, 2009. Pharmacognosie: Phytochimie des Plantes Médicinales (4ème edn). Lavoisier: Paris.
[20] Ouattara B., Angend L., Guissou P., Fondu P., Dubois J., Fréderich M., Jansen O., Van Heugen J. C., Wauters J. N., Tits M., 2004. LC/MS/NMR analysis of isomeric divanilloylquinic acids fom the root barks of Fagara xanthozyloides Lam. Phytochem. 65: 1145-1151.
[21] National Committee for Clinical Laboratory Standards (NCCLS, 1999) Performance Standards for Antimicrobial Susceptibility Testing. NCCLS Approved Standard M100-S9, Wayne.
[22] Ngbolua KN, Mubindukila REN, Mpiana PT et al., 2014d. Phytochemical screening, Antibacterial and Antioxidant activities of Anthocleista liebrechtsiana Wild & T. Durand (Gentianaceae) originated from Democratic Republic of the Congo. Journal of Advancement in Medical and Life Sciences, V1I3. DOI: 10.15297/JALS.V1I3.04.
[23] Ngbolua KN, Mubindukila REN, Mpiana PT et al., 2014e. In vitro Assessment of Antibacterial and Antioxidant activities of a Congolese medicinal plant species Anthocleista schweinfurthii Gilg (Gentianaceae). J. of Modern Drug Discovery and Drug Delivery Research. V1I3. DOI: 10.15297/JMDDR.V1I3.03.
[24] Weinstein MP, 2018. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clinical and Laboratory Standards Institute, 11th Edition. ISBN: 1-56238-836-3.
[25] Moroh J. L., Bahi C., Dje K., Loukou Y. G., Guide Guina F., 2008. Etude de l’activité antibactérienne de l’extrait acétatique de Morinda morindoides (Baker) Milne-Redheat (Rubiaceae) sur la croissance in vitro des souches d’Escherichia coli. Bulletin de la Société Royale des Sciences de Liège 77: 44-61.
[26] Chao-Min W, Yun-Lian J, Shang-Jie T, Chang-Hung C, 2016. The Pleiotropic Antibacterial Mechanisms of Ursolic Acid against Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules 21: 884. doi: 10.3390/molecules21070884.
[27] Madigan M. & Martinko J., 2007. Biologie des microorganismes, 11ème édition Pearson éducation, Paris, France.
[28] Grigore A, 2017. Plant Phenolic compounds as immunomodulatory Agents. http://dx.doi.org/10.5772/66112.
[29] Ngbolua K. N., Hajatiana Rakotoarimanana, Herintsoa Rafatro, Urverg Suzanne Ratsimamanga, Mudogo V., Mpiana P. T., Tshibangu D. S. T. (2011b). Comparative antimalarial and cytotoxic activities of two Vernonia species: V. amygdalina from the Democratic Republic of Congo and V. cinerea subsp vialis endemic to Madagascar. Int. J. Biol. Chem. Sci. 5 (1): 345-353.
[30] Ngbolua K. N., Rafatro Herintsoa, Rakotoarimanana Hajatiana, Ratsimamanga Urverg Suzanne, Mudogo V., Mpiana P. T., Tshibangu D. S. T. (2011a). Pharmacological screening of some traditionally-used antimalarial plants from the Democratic Republic of Congo compared to its ecological taxonomic equivalence in Madagascar. Int. J. Biol. Chem. Sci. 5 (5): 1797-1804.
[31] Wink M., Ashour M. L. & El-Readi M. Z., 2012. Secondary metabolites from plants inhibiting ABC transporters and reversing resistance of cancer cells and microbs to cytotoxie antimicrobial agents. Front Microbiol. 3: 130.
[32] Balandya E, Reynolds T, Obaro S, Makani J, 2016. Alteration of lymphocyte phenotype and function in Sickle cell anemia: Implications for vaccine responses. Am J Hematol. 91 (9): 938-946.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.