International Journal of Chemical and Biomolecular Science
Articles Information
International Journal of Chemical and Biomolecular Science, Vol.1, No.3, Oct. 2015, Pub. Date: Sep. 1, 2015
Evaluation of the Effects and Mechanisms of Bioactive Components Present in Hypoglycemic Plants
Pages: 167-178 Views: 5175 Downloads: 1495
[01] Marisa F. Mendes, Chemical Engineering Department, Technology Institute, Universidade Federal Rural Do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil.
[02] I. David L. Bogle, Chemical Engineering Department, University College London (UCL), London, United Kingdom.
Diabetes mellitus is a disease that is becoming increasingly prevalent worldwide. In many cases, people do not have access to synthetic drugs and make use of teas of different plants present in different countries, in order to reduce the symptoms. The plant extracts may contain bioactive compounds and may also contain toxic substances harmful to the human body. Much has been published about plants with antidiabetic activity, identifying their bioactive compounds, but there is no work in the literature that identifies the mechanisms of action of the extracts or isolated compounds of the extracts for a better understanding of the chemical reactions that occur in patients with diabetes. Therefore, this study aims to review published works that have tried to show some active mechanism of the different compounds (flavonoids, saponins, polyphenols, vitamins, etc.), to explore these mechanisms through mathematical models that can predict the benefits of these extracts to, in the future, facilitate the application of these natural products into less expensive drugs. It can be concluded that many of the extracts and isolated compounds from different hypoglycemic plants have as main mechanisms the induction of the insulin secretion, the enhancement of the number of beta cells of pancreatic islets, and have antioxidant properties.
Diabetes, Flavones, Hypoglycemic Activity, Antioxidant Property
[01] Alexander-Lindo, R. L., Morrison, E. Y., Nair, M. G., 2004, Hypoglycemic effect of stimgast-4-en-3-one and its corresponding alcohol from bark of the Anarcadium occidentale (cashew), Phytother Res., 18, 5, pp. 403.
[02] Andrade-Cetto, A., Wiedenfeld, H., 2001, Hypoglycemic effect of Cecropia obtusifolia on Streptozotocin diabetic rats, Journal of Ethnopharmacology 78, pp. 145–149.
[03] Andrade-Cetto, A., Heinrich, M., 2005, Mexican plants with hypoglycemic effect used in the treatment of diabetes, Journal of Ethnopharmacology, 99, pp. 325.
[04] Andrade-Cetto, A., Matinez-Zurita, E., Soto-Constantino, A., Revilla-Monsalve, C., Wiedenfeld, H., 2008, Chronic hypoglycemic effect of Malmea depressa root on n5-streptozotocin diabetic rats, Journal of Ethnopharmacology, 116, pp. 358.
[05] Aragão, D. M. O., Guarize, L., Lanini, J., Costa, J. C., Garcia, R. M. G., Scio, E., 2010, Hypoglycemic effects of Cecropia pachystachya in normal and alloxan-induced diabetic rats, Journal of Ethnopharmacology, 128, pp. 629.
[06] Arumugam, G., Manjula, P., Paari, N., 2013, A review: anti diabetic medicinal plants used for diabetes mellitus, Journal of Acute Disease, pp. 196-200.
[07] Aslan, M., Orhan, N., Orhan, D. D., Ergun, F., 2010, Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes, Journal of Ethnopharmacology, 128, pp. 384.
[08] Azahar, M. A., Al-Naqeb, G., Hasan, M., Adam, A., 2012, Hypoglycemic effect of Octomeles sumatrana aqueous extract in streptozotocin-induced diabetic rats and its molecular mechanims, Asian Pacific Journal of Tropical Medicine, pp. 875.
[09] Babiaka, S. B., Ntie-Kang, F., Ndingkokhar, B., Mbah, J. A., Sippl, W., Yong, J. N., 2015, The chemistry and bioactivity of Southern African flora I: a bioactivity versus ethnobotanical survey of alkaloid and terpenoid classes, RSC Advances, 5, pp. 43242.
[10] Babiaka, S. B., Ntie-Kang, F., Ndingkokhar, B., Mbah, J. A., Sippl, W., Yong, J. N., 2015, The chemistry and bioactivity of Southern African flora II: flavonoids, quinones and minor compound classes, RSC Advances, 5, pp. 57704.
[11] Bahmani, M., Golshahi, H., Saki, K., Rafieian-Kopaei, M., Delfan, B., Mohammadi, T., 2014, Medicinal plants and secondary metabolites for diabetes mellitus control, Asian Pacific Journal of Tropical Disease, 4, 2, pp. 5687.
[12] Barnes, B. R., Marklund, S., Steiler, T. L., Walter, M., Hjalm, G., Amarger, V., Mahlapuu, M. Leng, Y., Johansson, C., Galuska, D., Lindgren, K., Abrink, M., Stapleton, D., Zierath, J. R., Andersson, L., 2004, The 5’-AMP-activated protein kinase gamma 3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle, Journal of Biological Chemistry, 279, pp. 38441.
[13] Daisy, P., Balasubramanian, K., Rajalakshmi, M., Elisa, J., Selvaraj, J., 2010, Insulin mimetic impact of catechin isolated from Cassia fistula on the glucose oxidation and molecular mechanisms of glucose up take on streptozotocin-induced diabetic Winstar rats, Phytomedicine, 17, pp. 28.
[14] De, D., Chattejee, K., Monjur-Ali, K., Bera, T. K., Ghosh, D., 2011, Antidiabetic potentiality of the aqueous-methanolic extract of seed of Swietenia mahagoni (L) Jacq. in streptozotocin-induced diabetic male albino rat: a correlative and evidence-based approach with antioxidative and antihyperlipidemic activities, Evid. Based Complement. Altern. Med., pp. 1.
[15] Elekofehinti, O. O., 2015, Saponins: Anti-diabetic principles from medicinal plants – a review, Pathophysiology, article in press.
[16] Dewanjee, S., Maiti, A., Dias, A. K., Mandal, S. C., Dey, S. P., 2009, Swietenine: a potential oral hypoglycemic from Swietenia macrophylla seed, Fitoterapia, 80, pp. 249.
[17] Gomes, A., Vedasiromoni, J. R., Das, M., Sharma, R. M., Ganguly, D. K., 1995, Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat, Journal of Ethnopharmacology, 45, pp. 223-226.
[18] Grover, J. K., Vats, V., Yadav, S., 2002, Effect of feeding aqueous extract of Petrocarpus marsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism, Molecular and Cellular Biochemistry, 241, pp. 53.
[19] Gupta, M. P., Solis, N. G., Avella, M.E., Sanchez, C., 1984, Hypoglycemic activity of Neurolena lobata, Journal of Ethnopharmacology, 10, pp. 323.
[20] Huang, D., Jiang, Y., Chen, W., Yao, F., Huang, G., Sun, L., 2015, Evaluation of hypoglycemic effects of polyphenols and extracts from Penthorum chinense, Journal of Ethnopharmacology, 163, pp. 256.
[21] Ivorra, M. D., Paya, M., Villar, A., 1989, A review of natural products and plants as potent antidiabetic drugs, Journal of Ethnopharmacology, 27, pp. 243.
[22] Juarez-Reyes, K., Brindis, F., Medina-Campos, O. N., Pedraza-Chaverri, J., Bye, R., Linares, E., Mata, R., 2015, Hypoglycemic, antihyperglycemic, and antioxidant effects of the edible plant Anoda cristata, Journal of Ethnopharmacology, 161, pp. 36-45.
[23] Kobayashi, Y., Suzuki, M., Satsu, H., Arai, S., Hara, Y., Suzuki, Z., Miyamoto, Y., Suzuki, M., 2000, Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cell by a competitive mechanism, Journal of Agricultural and Food Chemistry, 48, pp. 5618-5623.
[24] Li, K. K., Gong, X. J., 2015, A review on the medicinal potential of Panax ginseng saponins in diabetes mellitus, RSC Advances, 5, pp. 47353.
[25] Li, Y. G., Ji, D. F., Zhong, S., Lin, T.B., Lv, Z. Q., 2015, Hypoglycemic effect of deoxynojirimycin-polysaccharide on high fat diet and streptozotocin-induced diabetic mice via regulation of hepatic glucose metabolism, Chemico-Biological Interactions, 225, pp. 70.
[26] Marles, R. J., Farnsworth, N. R., 1995, Antidiabetic plants and their active constituents, Phytomedicine, 2, pp. 137.
[27] Manosroi, J., Moses, Z. Z., Manosroi, W., Manosroi, A., 2011, Hypoglycemic activity of Thai medicinal plants selected from the Thai/Lanna Medicinal Recipe Database MANOSROI II, Journal of Ethnopharmacology, 138, pp. 92.
[28] Mukherjee, P. K., Maiti, K., Mukherjee, K., Houghton, P.J., 2006, Leads from Indian medicinal plants with hypoglycemic potentials, Journal of Ethnopharmacology, 106, pp. 1-28.
[29] Murase, T., Misawa, K., Haramizu, S., Hase, T., 2009, Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway, Biochemical Pharmacology, 78, pp. 84.
[30] Nimse, S. B., Pal, D., 2015, Free radicals, natural antioxidants, and their reaction mechanisms, RSC Advances, 5, pp. 27986.
[31] Ojewole, J. A., 2002, Hypoglycemic effect of Clausena anisata Hook methanolic root extract in rats, Journal of Ethnopharmacology, 81, pp. 231.
[32] Ojewole, J. A., 2003, Laboratory evaluation of the hypoglycemic effect of Anacardium occidentale Linn (Anacardiaceae) stem-bark extracts in rats, Methods Fin Exp Clin Pharmacol., 25, 3, pp. 199.
[33] Ojewole, J. A., 2006, Antinociceptive, anti-inflammatory and antidiabetic properties of Hypoxis hemerocallidea Fish and C. A. Mey (Hypoxidaceae) corn aqueous extract in mice and rats, Journal of Ethnopharmacology, 103, pp. 126.
[34] Ovalle-Magallanes, B., Medina-Campos, O. N., Pedraza-Chaverri, J., Mata, R., 2015, Hypoglycemic and antihyperglycemic effects of phytopreparations and limonoids from Swietenia humilis, Phytochemistry, 110, pp. 111.
[35] Pereira, D.F., Cazarolli, L.H., Lavado, C., Mengatto, V., Figueiredo, M.S.R.B., Guedes, A., Pizzolatti, M.G., Silva, F.R.M.B., 2011, Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis, Nutrition, 27, pp. 1161.
[36] Perez, R. M., Zavala, G. M. A., Perez, S. G., Perez, C. G., 1998, Antidiabetic effect of compounds isolated from plants, Phytomedicine, 5, pp. 55.
[37] Revilla-Monsalve, M., Andrade-Cetto, A., Palomino-Garibay, M. A., Wiedenfeld, H., Islas-Andrade, S., 2007, Hypoglycemic effect of Ceropia obtusifolia Bertol aqueous extracts on type 2 diabetic patients, Journal of Ethnopharmacology, 111, pp. 636-640.
[38] Sabu, M.C., Smitha, K., Kuttan, R., 2002, Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes, Journal of Ethnopharmacology, pp. 109-116.
[39] Saghizadeh, M., Ong, J. M., Garrey, W. T., Henry, M.M., Kern, P.A., 1996, The expression of TNT-alpha by human muscle: relationship to insulin resistance, Journal of Clinical Investigation, 97, pp. 1111.
[40] Sharma, S., Choudhary, M., Bhardwaj, S., Choudhary, N., Rana, A. C., 2014, Hypoglycemic potential of alcoholic root extract of Cassia occidentalis Linn. in streptozotocin induced diabetes in albino mice, Bulletin of Faculty of Pharmacy, Cairo University, 52, pp. 211.
[41] Shimizu, M., Kobayashi, Y., Suzuki, M., Satsu, H., Miyamoto, Y., 2000, Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism, Journal of Agricultural and Food Chemistry, 48, pp. 5618.
[42] Shivanna, N., Naika, M., Khanum, F., Kaul, V. K., 2013, Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana, Journal of Diabetes and its Complications, 27, pp. 103-113.
[43] Silva, K.L., Filho, V.C., 2002, Plantas do gênero Bauhinia: Composição química e potencial farmacológico, Química Nova, 25, 3, pp. 449.
[44] Tang, W., Li, S., Liu, Y., Huang, M.T., Ho, C.T., 2013, Anti-diabetic activity of chemically profiled green tea and black tea extracts in a type 2 diabetes mice model via different mechanisms, Journal of Functional Foods, 5, pp. 1784.
[45] Trojan-Rodrigues, M., Alves, T. L. S., Soares, G. L. G., Ritter, M. R., 2012, Plants used as antidiabetics in popular medicine in Rio Grande do Sul, souther Brazil, Journal of Ethnopharmacology, 139, pp. 155.
[46] Tsuchiya, H., 2001, Stereospecificity in membrane effects of catechins, Chemico-biological interactions, 134, pp. 41.
[47] Twai, H. A. A. A., Al-Badr, A. A., 1998, Hypoglycemic activity of Artemisia herba Alba, Journal of Ethnopharmacology, 24, pp. 123.
[48] Ullah, A., Khan, A., Khan, I., 2015, Diabetes mellitus and oxidative stress – a concise review, Saudi Pharmacological Journal, article in press,
[49] Vargas, C. E., Mendes, M. F., Azevedo, D.A., Pessoa, F. L. P., Uller, A.C., 2010, Extraction of the essential oil of abajeru (Chrysobalanus icaco) using supercritical CO2, The Journal of Supercritical Fluids, 54, pp. 171.
[50] Vasconcelos, C.F.B., Maranhão, H. M. L., Batista, T.M., Carneiro, E. M., Ferreira, F., Costa, J., Soares, L. A. L., Sa, M. D. C, Souza, T.P., Wanderley, A. G., 2011, Hypoglycaemic activity and molecular mechanisms of Caesalpinia ferrea Martius bark extract on streptozotocin-induced diabetes in Winstar rats, Journal of Ethnopharmacology, 137, pp. 1533.
[51] Yadav, J.P., Arya, V., Yadav, S., Panghal, M., Kumar, S., Dhankhar, S., 2010, Cassia occidentalis L. a review on its ethnobotany, phytochemical and pharmacological profile, Fitoterapia, 81, 4, pp. 223.
[52] Yin, J., Ye, J., Jia, W., 2012, Effects and mechanisms of berberine in diabetes treatment, Acta Pharmaceutica Sinica B, 2, 4, pp. 327.
[53] Wheeler, A., Boileau, A.C., Winkler, P.C., Compton, J.C., Prakash, I., Jiang, X., 2008, Pharmacokinetics of rebaudioside A and stevioside after single oral doses in healthy men, Food and Chemical Toxicology, 46, 7, pp. 554-560.
[54] Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., 2001, Role of AMP-activated protein kinase in mechanism of metformin action, Journal of Clinical Investigation, 108, pp. 1167.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.