International Journal of Chemical Engineering and Analytical Science
Articles Information
International Journal of Chemical Engineering and Analytical Science, Vol.1, No.1, Sep. 2016, Pub. Date: Jun. 20, 2016
Parametric Study of Major Items in Desulphurization of Petroleum Gas
Pages: 31-35 Views: 1872 Downloads: 1046
Authors
[01] Mehdi Ghanbari, Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran.
[02] Farshad Farahbod, Department of Chemical Engineering, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran.
Abstract
In this paper, aluminum oxide nano particles are synthesized and are contacted with a flow of sour LPG. The synthesized nano particles are characterized by SEM and TEM. The process performance of mercaptan removal from LPG on zinc oxide nano particles is illustrated by the ratio of outlet concentration per feed concentration. The effects of operating conditions such as operating temperature and pressure, the amount of mercaptan concentration in feed stream, size of nano catalyst, the bed diameter and also, height of the bed are investigated in this paper. This work studies the adsorption of mercaptan from liquefied petroleum gas with an emphasis on the influence of the operating and geometric parameters on process efficiency. The experimental results show the changes of height from 6 cm to 7 cm decrease the amount of quality index from 0.032 to 0.027. But the variation from 7 to 9 doesn't show any changes in the amount of C/C0 as quality index.
Keywords
Diameter, Catalytic, Pressure, Temperature, Efficiencey, Optimization
References
[01] Yuxiao Niu, Mingyang Xing, Baozhu Tian, Jinlong Zhang, 2012, “Improving the visible light photocatalytic activity of nano-sized titanium dioxide via the synergistic effects between sulfur doping and sulfation, ’’Applied Catalysis B: Environmen., 115–116 (5) pp. 253-260.
[02] Corrie L. C., Kenneth J. K., 2002, “Unique Chemical Reactivities of Nanocrystalline Metal Oxides toward Hydrogen Sulfide,’’ Chem. Mater., 14 (4) pp. 1806-1811.
[03] Rao Mumin, Song Xiangyun, Cairns Elton J., 2012, “Nano-carbon/sulfur composite cathode materials with carbon nanofiber as electrical conductor for advanced secondary lithium/sulfur cells,’’ J. Power Source., 205 (1), pp. 474-478.
[04] Zhang Yongguang, Zhao Yan, Konarov Aishuak, Gosselink Denise, Soboleski Hayden Greentree, Chen P., 2013, “A novel nano-sulfur/polypyrrole/graphene nanocomposite cathode with a dual-layered structure for lithium rechargeable batteries,’’ J. Power Source., 241 (1), pp. 517-521.
[05] Hosseinkhani M., Montazer M., Eskandarnejad S., Rahimi M. K., 2012, “Simultaneous in situ synthesis of nano silver and wool fiber fineness enhancement using sulphur based reducing agents,’’ Colloids and Surfaces A: Physicochem. Eng. Aspect., 415 (5), pp. 431-438.
[06] Christoforidis Konstantinos C., Figueroa Santiago J. A., Fernández-García Marcos, 2012, “Iron–sulfur codoped TiO2 anatase nano-materials: UV and sunlight activity for toluene degradation,’’ Applied Catalysis B: Environment., 117–118 (18), pp. 310-316.
[07] Balouria Vishal, Kumar Arvind, Samanta S., Singh A., Debnath A. K., Mahajan Aman, Bedi R.K., Aswal D. K., Gupta S. K., 2013, Nano-crystalline Fe2O3 thin films for ppm level detection of MERCAPTAN,’’Sensors Actuators B: Chemical, 181, pp. 471-478.
[08] Eow, D., John, S., 2002, “Recovery of sulfur from sour acid gas: A review of the technology Environmental Progress,’’ American Institute Chem. Eng., 21, pp. 143-162.
[09] Habibi R., Rashidi A. M., Towfighi Daryan J., Alizadeh A., 2010, "study of the rod –like and spherical nano ZnO morphology on Mercaptan removal from natural gas". Appl. Surf. Sci., 257, pp. 434- 439.
[10] Novochimskii I. I., Song CH., Ma X., Liu X., Shore L., Lampert J., Farrauto R. J., 2004, "Low temperature MERCAPTAN removal from steam containing gas mixtures with ZnO for fuel cell application. 2. wash- coated monolith". Ene. Fuel., 18, pp. 584-589.
[11] Novochimskii II., Song CH., Ma X., Liu X., Shore L., Lampert J., Farrauto R. J., 2004, "Low temperature MERCAPTAN removal from steam containing gas mixtures with ZnO for fuel cell application. 1. ZnO particles and extrudates". Ene. Fuel., 18, pp. 576-583.
[12] Arthour L. K., Richard B., 1997, "Gas purification", Nielsen edition.
[13] Habibi R., Towfighi Daryan J., Rashidi A. M., 2009, Shape and size-controlled fabrication of ZnO nanostructures using noveltemplates, J. Exp. Nanosci. 4 (1) 35-45.
[14] Farahbod Farshad, Bagheri Narges, Madadpour Fereshteh, Effect of Solution Content ZnO Nanoparticles on Thermal Stability of Poly Vinyl Chloride, Journal of Nanotechnology in Engineerin and Medicine, DOI: 10.1115/1.4025209, In press.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.