International Journal of Chemical Engineering and Analytical Science
Articles Information
International Journal of Chemical Engineering and Analytical Science, Vol.1, No.2, Nov. 2016, Pub. Date: Sep. 23, 2016
Waste to Wealth-Unmodified and Organo-modified Clay Effects on Mechanical and Thermal Properties of Waste Polypropylene
Pages: 101-106 Views: 2946 Downloads: 932
Authors
[01] Arkan J. Hadi, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, Malaysia.
[02] Kamal Bin Yusoh, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, Malaysia.
[03] Ghassan J. Hadi, Al Dour Technical Institution, Technical Education Organization, Tikrit, Salahaldden, Iraq.
[04] S. F. Hasany, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, Malaysia.
Abstract
The aim of this research (waste to wealth), is to study the improved thermal and mechanical properties of waste polypropylene (wPP) in a nanocomposite. For this purpose, Organo-modified (OMMT) and unmodified sodium montmorillonite clay (MMT) were employed to fabricate polypropylene/clay nanocomposite. Commercial grade (OMMT) and (MMT) were added in a range of 1-5 wt %, in wPP to prepare polypropylene-clay nanocomposites, following the melt intercalation method. Fourier transform infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM) were used to evaluate polymer structure before and after the fabrication. Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) were used to analyse the thermal stability and thermal properties for the waste polyolefin and respective nanocomposites. The FTIR and FESEM results exhibited no change in the chemical structure of the polymer after clay addition and no exfoliation was observed in case of unmodified clay. Melting temperature and crystallization percentage was increased up to 3 wt% loading which was the best in comparison to the original waste matrix. The thermal stability of the wPP/clay nanocomposites was found improved in the case of loading 3 wt % of OMMT.
Keywords
Waste to Wealth, Organo-Clay, Nanocomposites, Physicochemical Properties
References
[01] PlasticsEurope. Plastics Europe. 2015. at .
[02] Xu, B.; Zheng, Q.; Song, Y.; Shangguan, Y. Polymer (Guildf). 2006, 47, 2904–2910.
[03] Xu, S.; Tangpong, X. W. J. Mater. Sci. 2013, 48, 578–597.
[04] Abdel Gawad, A.; Esawi, A. K.; Ramadan, A. J. Mater. Sci. 2010, 45, 6677–6684.
[05] Xi, Y.; Frost, R. L.; He, H. J. Colloid Interface Sci. 2007, 305, 150–158.
[06] Kozak, M.; Domka, L. J. Phys. Chem. Solids. 2004, 65, 441–445.
[07] Roelofs, J. C.; Berben, P. H. Appl. Clay Sci. 2006, 33, 13–20.
[08] Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.; Chung, T. C. Chem. Mater. 2001, 13, 3516–3523.
[09] Hasegawa, N.; Okamoto, H.; Kawasumi M.; Kato, M.; Tsukigase, A.; Usuki, A. Macromol. Mater. Eng. 2000, 280-281, 76–79.
[10] Zapata, P.; Quijada, R.; Covarrubias, C.; Moncada, E.; Retuert, J.; Lee, D.; Kim, H.; Yoon, K.; Min, K. E.; Seo, K. H.; Noh, S. K.; de Paiva, L. B.; Morales, A. R.; Valenzuela Díaz, F. R.; Kawasumi, M.; Hasegawa, N.; Kato, M.; Usuki, A.; Okada, A.; Rong, M. Z.; Zhang, M. Q.; Pan, S. L.; Friedrich, K. Appl. Clay Sci. 2008, 113, 457–462.
[11] Heinemann, J.; Reichert, P.; Thomann, R.; Mulhaupt, R. Macromol. Rapid Commun., 1999, 20, 423–430.
[12] Jin, Y. H.; Park, H. J.; Im, S.-S.; Kwak, S.-Y.; Kwak, S. Macromol. Rapid Commun., 2002, 23, 135–140.
[13] Alexandre, M. Polymer (Guildf). 2002, 43, 2123–2132.
[14] Olewnik, E.; Garman K.; Czerwiński, W. J. Therm. Anal. Calorim. 2010, 101, 323–329.
[15] T. P. Mohan and K. Kanny, J. Mater. Sci., 2013, 48, 8292–8301.
[16] Drozdov, D.; Christiansen, J. C. Eur. Polym. J. 2007, 43, 10–25.
[17] Hadi, A. J.; Najmuldeen G. F.; Ahmed, I. J. Polym. Eng. 2012, 32, 585–591.
[18] Hadi, A. J.; Najmuldeen G. F.; Ahmed, I. J. Purity, Util. 2012, 1, 400–410.
[19] J Hadi, A. J.; Najmuldeen G. F.; Ahmed, I. APCBEE Procedia. 2012, 3, 281–286.
[20] Hadi, A. J.; Najmuldeen G. F.; Kamal, B. Y. Energy Educ. Sci. Technol. Part A. 2013, 30.
[21] Hadi, A. J.; Najmuldeen G. F.; Kamal, B. Y. J. Polym. Eng. 2013, 33, 471–481.
[22] Pradhan K.; Nayak, P. Adv. Appl. Sci. 2012, 3, 3045–3052.
[23] TN 48, TA Instruments.
[24] Wunderlich, Acad. Press. 1990, 417–431.
[25] Araújo, E. M.; Barbosa, R.; Morais, C. R. S.;. Soledade, L. E. B; Souza A. G.; Vieira, M. Q. J. Therm. Anal. Calorim. 2007, 90, 841–848.
[26] Ding, D.; Jia, H.; He, B.; Hong, H. Polym. Test. 2005, 24, 94–100.
[27] Burgaz, Polymer (Guildf). 2011, 52, 5118–5126.
[28] Chigwada, G.; Wang D.; Wilkie, C. A. Polym. Degrad. Stab. 2006, 91, 848–855.
[29] Durmuş, A.; Woo, M.; Kaşgöz, A.; Macosko C. W.; Tsapatsis, M. Eur. Polym. J. 2007, 43, 3737–3749.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.