International Journal of Electronic Engineering and Computer Science

Articles Information

The Two Quantum Measurement Theories and the Bell-Kochen-Specker Paradox

Pages: 40-44 Views: 1303 Downloads: 650

[01]
Koji Nagata, Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
[02]
Tadao Nakamura, Department of Information and Computer Science, Keio University, Yokohama, Japan.

We review a property of a new measurement theory based on the truth values. The results of measurements are either 0 or 1. The measurement theory accepts a hidden variable model for a single Pauli observable. Therefore we can introduce a classical probability space for the measurement theory in this case. And we can measure the single Pauli observable by using the measurement theory based on the truth values. Our discussion provides a new insight to formulate quantum measurement theory, by using the measurement theory here based on the truth values. In this paper, we discuss the fact that the projective measurement theory (the results of measurements are either +1 or -1) says the Bell, Kochen, and Specker (BKS) paradox for the single Pauli observable. Therefore, we cannot introduce a classical probability space for the measurement theory in this case. Our discussion says that we cannot measure the single Pauli observable by using the projective measurement theory without the BKS paradox.

Quantum Measurement Theory, Quantum Non Locality, Formalism

[01]
J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1955).
[02]
J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley Publishing Company, 1995), Revised ed.
[03]
A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, The Netherlands, 1993).
[04]
M. Redhead, Incompleteness, Nonlocality, and Realism (Clarendon Press, Oxford, 1989), 2nd ed.
[05]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
[06]
R. P. Feynman, R. B. Leighton, and M. Sands, Lectures on Physics, Volume III, Quantum mechanics (Addison-Wesley Publishing Company, 1965).
[07]
A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).(Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?)
[08]
J. S. Bell, Physics 1, 195 (1964). (On the Einstein–Podolsky–Rosen paradox).
[09]
S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967). (The problem of hidden variables in quantum mechanics).
[10]
D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell's Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 69-72. (Going beyond Bell’s theorem)
[11]
D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Am. J. Phys. 58, 1131 (1990). (Bell’s Theorem without Inequalities)
[12]
C. Pagonis, M. L. G. Redhead, and R. K. Clifton, Phys. Lett. A 155, 441 (1991). (The breakdown of quantum non-locality in the classical limit).
[13]
N. D. Mermin, Phys. Today 43(6), 9 (1990). (What’s Wrong with These Elements of Reality?)
[14]
N. D. Mermin, Am. J. Phys. 58, 731 (1990). (Quantum mysteries revisited)
[15]
A. Peres, Phys. Lett. A 151, 107 (1990). (Incompatible results of quantum measurements)
[16]
N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990). (Simple Uniﬁed Form for the Major No-Hidden-Variables Theorems)
[17]
A. J. Leggett, Found. Phys. 33, 1469 (2003). (Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem)
[18]
S. Groblacher, T. Paterek, R. Kaltenbaek, C. Brukner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, Nature (London) 446, 871 (2007). (An experimental test of non-local realism)
[19]
T. Paterek, A. Fedrizzi, S. Groblacher, T. Jennewein, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, Phys. Rev. Lett. 99, 210406 (2007). (Experimental test of non-local realistic theories without the rotational symmetry assumption)
[20]
C. Branciard, A. Ling, N. Gisin, C. Kurtsiefer, A. Lamas-Linares, and V. Scarani, Phys. Rev. Lett. 99, 210407 (2007). (Experimental falsification of Leggett's nonlocal variable model)
[21]
A. Suarez, Found. Phys. 38, 583 (2008). (Nonlocal “Realistic” Leggett Models Can be Considered Refuted by the Before-Before Experiment)
[22]
M. Zukowski, Found. Phys. 38, 1070 (2008). (Comment on: Nonlocal “Realistic” Leggett Models Can be Considered Refuted by the Before-Before Experiment)
[23]
A. Suarez, Found. Phys. 39, 156 (2009). (On Bell, Suarez-Scarani, and Leggett Experiments: Reply to a Comment by Marek Zukowski in [Found. Phys. 38:1070, 2008])
[24]
D. Deutsch, Proc. Roy. Soc. London Ser. A 400, 97 (1985). (Quantum theory, the Church-Turing principle and the universal quantum computer)
[25]
D. Deutsch and R. Jozsa, Proc. Roy. Soc. London Ser. A 439, 553 (1992). (Rapid Solution of Problems by Quantum Computation)
[26]
R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Proc. Roy. Soc. London Ser. A 454, 339 (1998). (Quantum algorithms revisited)
[27]
J. A. Jones and M. Mosca, J. Chem. Phys. 109, 1648 (1998). (Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer)
[28]
S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Haffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, Nature (London) 421, 48 (2003). (Implementation of the Deutsch-Jozsa Algorithm on an Ion-Trap Quantum Computer)
[29]
A. N. de Oliveira, S. P. Walborn, and C. H. Monken, J. Opt. B: Quantum Semiclass. Opt. 7, 288-292 (2005). (Implementing the Deutsch algorithm with polarization and transverse spatial modes)
[30]
Y.-H. Kim, Phys. Rev. A 67, 040301(R) (2003). (Single-Photon Two-Qubit Entangled States: Preparation and Measurement)
[31]
M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, Phys. Rev. Lett. 91, 187903 (2003). (Experimental Application of Decoherence-Free Subspaces in an Optical Quantum-Computing Algorithm)
[32]
M. S. Tame, R. Prevedel, M. Paternostro, P. Bohi, M. S. Kim, and A. Zeilinger, Phys. Rev. Lett. 98, 140501 (2007). (Experimental realization of Deutsch’s algorithm in a one-way quantum computer)
[33]
E. Bernstein and U. Vazirani, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC '93), pp. 11-20 (1993), doi:10.1145/167088.167097; SIAM J. Comput. 26-5, pp. 1411-1473 (1997). (Quantum complexity theory)
[34]
D. R. Simon, Foundations of Computer Science, (1994) Proceedings., 35th Annual Symposium on: 116-123, retrieved 2011-06-06. (On the power of quantum computation)
[35]
J. Du, M. Shi, X. Zhou, Y. Fan, B. J. Ye, R. Han, and J. Wu, Phys. Rev. A 64, 042306 (2001). (Implementation of a quantum algorithm to solve the Bernstein-Vazirani parity problem without entanglement on an ensemble quantum computer)
[36]
E. Brainis, L.-P. Lamoureux, N. J. Cerf, P. Emplit, M. Haelterman, and S. Massar, Phys. Rev. Lett. 90, 157902 (2003). (Fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits)
[37]
H. Li and L. Yang, Quantum Inf. Process. 14, 1787 (2015). (A quantum algorithm for approximating the influences of Boolean functions and its applications)
[38]
K. Nagata and T. Nakamura, Int. J. Theor. Phys. 55, 3616, (2016). (Measurement Theory in Deutsch’s Algorithm Based on the Truth Values)
[39]
K. Nagata and T. Nakamura, Physics Journal, Volume 1, Issue 3, 183 (2015). (On the Bell-Kochen-Specker paradox)

Vol. 3, Issue 3, September Submit a Manuscript Join Editorial Board Join Reviewer Team

About This Journal |

All Issues |

Open Access |

Indexing |

Payment Information |

Author Guidelines |

Review Process |

Publication Ethics |

Editorial Board |

Peer Reviewers |

Copyright © 2014 - 2017 American Institute of Science except certain content provided by third parties.