International Journal of Materials Chemistry and Physics
Articles Information
International Journal of Materials Chemistry and Physics, Vol.1, No.1, Aug. 2015, Pub. Date: Jul. 20, 2015
Hydrothermal Synthesis of Nanostructured Materials for Energy Harvesting Applications
Pages: 31-42 Views: 3320 Downloads: 2190
Authors
[01] Radu-Robert Piticescu, National Institute for Nonferrous and Rare Metals, Pantelimon-Ilfov, Romania.
[02] Adrian Mihail Motoc, National Institute for Nonferrous and Rare Metals, Pantelimon-Ilfov, Romania.
[03] Albert Ioan Tudor, National Institute for Nonferrous and Rare Metals, Pantelimon-Ilfov, Romania.
[04] Cristina Florentina Rusti, National Institute for Nonferrous and Rare Metals, Pantelimon-Ilfov, Romania.
[05] Roxana Mioara Piticescu, National Institute for Nonferrous and Rare Metals, Pantelimon-Ilfov, Romania.
[06] Maria Dolores Ramiro-Sanchez, AIDICO-Technological Institute for Construction, Novelda, Alicante, Spain.
Abstract
Hydrothermal synthesis is one a chemical method with high potential for obtaining nanostructured materials with controlled properties for energy harvesting applications. The main advantage of the hydrothermal processes is the ability to control nucleation and growth in complex systems containing a large number of components and dopants, without affecting the structural and morphological homogeneity. This is leading to some important technological and environmental advantages such as: one step process for direct production of crystalline ceramic powders, low energy consumption, products with much higher homogeneity than classical solid state processing, versatility in producing oxides, non-oxides and hybrid materials with different morphologies, possibility to be up-scaled to pilot and production levels. These features are proved for some selected nanomaterials with high impact in energy harvesting technologies: yttria doped zirconia nanomaterials for solid oxide fuel cells, lead zirconate titantate (PZT) used as piezoelectric materials in sensors, transducers and actuators, BST perowskite structures for sensors applications and zinc oxide as nanomatrix for encapsulating phase change materials in energy storage. The development of these complex materials was based on thermodynamic approaches and modelling methods to optimize the grain size and microstructure. Based on these approaches, future developments are expected to show the scalability of the processes from laboratory to pilot and industrial scale, thus opening new directions in the energy harvesting field.
Keywords
Nanostructures, Hydrothermal Synthesis, Thermodynamic Prediction, Modelling
References
[01] Integrated Research and Industrial Roadmap for European Nanotechnology, 2012
[02] Carl C. Koch, Nanostructured Materials: Processing, Properties and potential Applications, 2002, Noyes Publications, USA, ISBN: 0-8155-1451-4
[03] P. Kriygsman, The Hydrothermal Synthesis of Ceramic Powders, Copyright by Chemical Engineering Company AG, Niederscherli, 1992, Switzerland
[04] D. Segal, Chemical Synthesis of Advanced Ceramic Materials, 1989, Cambridge University Press
[05] K.S. Pitzer, Activity Coefficients in Electrolyte Solutions, 2nd edn, CRC Press, (1991)
[06] Marioara Abrudeanu, Robert Piticescu, Roxana Piticescu, Sinteza chimica a pulberilor ceramice ultradisperse, Ed. Tehnica, 2000, Bucuresti
[07] H. Hayashi, Y. Hakuta, Materials 3(2010), 3794-3817; doi:10.3390/ma3073794
[08] H. Hayashi, K. Torii, J. Mater. Chem. 12(2002), 3671–3676.
[09] B. Li, Y. Hakuta, H. Hayashi,. J. Supercrit. Fluid. 39 (2006), 63–69.
[10] B. Li, Y. Hakuta, H. Hayashi, Mater. Lett. 61 (2007) 3791–3794
[11] M. Sorescu, L. Diamandescu., D. Tarabasanu, J. Phys. Chem. Solids 65 (2004), 1719–1725
[12] J. Lee, A.S. Teja, J. Supercrit. Fluid. 35(2005), 83–90
[13] M. Umetsu, X. Man, K. Okuda, M. Tahereh, S. Ohara, J. Zhang, S. Takami, T. Adschiri, Chem. Lett. 2006, 35, 732–733
[14] Q.X. Zheng, B. Li, M. Xue, H.D. Zhang, Y.J. Zhan, W.S. Pang, X.T. Tao, M.H. Jiang, J. Supercrit. Fluid. 39(2006), 63–69.
[15] D. Zhao, E. Han, X. Wu, H. Guan, Mater. Lett., 60(2006), 3544–3547.
[16] C.B. Xu, A.S. Teja, J. Supercrit. Fluid. 39(2006), 135–141.
[17] M.J. Yoon, J.H. In, H.C. Lee, Korean J. Chem. Eng. 23(2006), 842–846.
[18] D. Zhao, X. Wu, H. Guan, E. Han, J. Supercrit. Fluid 42(2007), 226–233.
[19] H. Assaaoudi, Z. Fang, I.S. Butler, D.H. Ryan, J.A. Kozinski, Solid State Sci. 9 (2007), 385–393.
[20] H. Assaaoudi, Z. Fang, I.S. Butler, J.A. Kozinski, Nanotechnology 19(2008), 185606.
[21] Akira Yoko, Makoto Akizuki, Yoshito Oshima, Journal of Nanoparticle Research, Volume 16, Issue 4(2014).
[22] Qian, Qian; Liu, Yin; Chen, Chen; Zhang, Peiliang; Jiao, Baoxiang; Hou, Guihua, Asian Journal of Chemistry, Volume 26, Issue 6(2014)
[23] W.L. Suchanek, R.E. Rieman, Advances in Science and Technology, 45(2006), p.184-193
[24] W-. Yao, S-H. Yu, Int. J. Nanotechnology, Vo. 4, No.1/2, (2007), p. 129-141
[25] T.R. Shrout, S.J. Zhang, J. Electroceramics 19(2007), 111-124
[26] S.P. Beeby, R.N. Torah, M.J. Tudor, P. Glynne-Jones, T.O’ Donnell, C.R. Saha, S. Roy, J. Micromechanics and Microengineering 17(2007), 1257-1265
[27] D.J. Inman, Energy Harvesting Materials, 2009, Springer, ISBN 978-0-387-76463-4
[28] T. Dietl, Nature Mater., 9(2010), 965
[29] F.T. Ciachi and S.P. Badwal, J. Eur. Ceram. Soc., 7(1991), 197–206
[30] I. Kosacki, P. Colomban and H.V. Anderson, Proceedings of the US–Japan Workshop on Electrically Active Ceramic Interfaces. MIT, USA, 1998, pp. 180–188
[31] M. Miyayama and H. Yanagida, J. Am. Ceram. Soc., 67(1984), C194–C195
[32] Kim, B; Cho, K; Choi, J; Shin, D, J. Nanoscience and Nanotechnology, 15, Iss 1(2015)
[33] Zohreh Shahnavaz, Pooria Mn, Yatimah Alias, Ninie S.A. Manan. Sensors and Actuators B 208(2015) 389–398
[34] Hazhir Teymourian, Abdollah Salimi, Somayeh Firoozi, Aazam Korani, Saied Soltanian. Electrochimica Acta 143(2014) 196–206
[35] Luping Xuea,1, Chenfei Shena, 1, Mingbo Zhengb, Hongling Lua, Nianwu Lia, Guangbin Jia, Lijia Panb and Jieming Cao, Materials Letters, 65, Issue 2(2011), 198-200
[36] Pampuch, K. Haberko, Ceramic Powders, 1983, 623 – 634
[37] R. Stevens, Zirconia and zirconia ceramics, Magnesium Electron Ltd., ed. II, 1987
[38] Zhitomirsky, I., J. Eur. Ceram. Soc.,19(1999), 2581–2587
[39] R.R. Piticescu, C. Monty, D. Taloi, A. Motoc, S. Axinte, J. Eur. Ceram. Soc., 21(2001), 2057-2060.
[40] R.M. Piticescu, R.R. Piticescu, D. Taloi, V. Badilita, Nanotechnology, 14(2003), 1-6
[41] R.R. Piticescu, C. Monty, D. Millers, Sensors and Actuators B 109(2005), 102-106
[42] N. Settler, Ed., Piezoelectric Materials in Devices, ISBN 2-9703436-0-3, EPFL, 2002
[43] Mandel, C., Maune, H.; Maasch, M.; Sazegar, M.; Schüssler, M.; Jakoby, R. , Microwave Conference (GeMIC), 2011 German, ISBN: 978-1-4244-9225-1
[44] Dinghua Bao, Zhihong Wang, Wei Ren, Liangying Zhang, Xi Yao, Ceramics International 25(1999) 261-265
[45] R. M. Piticescu, P. Vilarhinho, L.M. Popescu, R.R. Piticescu, Journal of Optoelectronics and Advanced Materials, vol 8, no. 2(2006), 543-547
[46] S. Fuentes, F. Cespedes, L. Padiilla-Campos. D.E. Diaz-Droguett, Ceramics International 40(2014) 4975-4984
[47] Juan Li, Dengren Jin, Lixin Zhou, Jinrong Cheng, Materials Letters, Vol. 76, 2012, 100–102
[48] H. H. Al-Kayiem, S.C. Lin, A. Lukmon, Nanoscience & Nanotechnology-Asia, 3, 1(2013), 1-11
[49] Q. Ahsanulak, S.H. Kim, J.H. Kim, Y.B. Hahn, Mater. Res. Bull, 43 (2008), 3483-3489
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.