International Journal of Materials Chemistry and Physics
Articles Information
International Journal of Materials Chemistry and Physics, Vol.1, No.1, Aug. 2015, Pub. Date: Jul. 20, 2015
Boride Coatings of Fe–Cr Alloys and Chromium Steels
Pages: 43-66 Views: 2695 Downloads: 1340
Authors
[01] V. I. Dybkov, Department of Physical Chemistry of Inorganic Materials, Institute of Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
Abstract
Boriding of Fe–Cr alloy (5-30% chromium) and commercial chromium steel (13 and 25% Cr) samples in amorphous boron powder at 850–950ºC and reaction times 3600-43200 s (1-12 h) results in the formation of a surface coating consisting of two boride layers. In the case of Fe–Cr alloys containing 5-15% chromium and a 13% Cr steel, the outer layer bordering the boriding agent consists of the (Fe,Cr)B phase, whereas the inner adjacent to the solid substrate consists of the (Fe,Cr)2B phase. Each layer is a homogeneous phase (microstructure of the first type). With Fe–Cr alloys containing 25 and 30% chromium and a 25% Cr steel, each of two boride layers consists of two phases. The outer layer comprises the (Fe,Cr)B and (Cr,Fe)B phases, while the inner comprises the (Fe,Cr)2B and (Cr,Fe)2B phases. Both layers have a regular network-platelet microstructure of the second type. With Fe–5% Cr and Fe–10% Cr alloys, boriding during 3600 s leads to the formation of a single (Fe,Cr)2B layer. The next (Fe,Cr)B layer occurs after the first-formed (Fe,Cr)2B layer has reached, depending on the temperature of reaction, a thickness of 100-180 µm. With other alloys and steels, a reaction time of 3600 s is sufficient for both boride layers (Fe,Cr)B and (Fe,Cr)2B to occur. The characteristic feature of the layers is a pronounced texture, the strongest reflections being {002} and {020} for the FeB phase and {002} for the Fe2B phase. Diffusional growth kinetics of boride layers are close to parabolic and can more adequately be described by a system of two non-linear differential equations. Values of layer growth-rate constants are provided. Their temperature dependence obeys a relation of the Arrhenius type. Boride layers with the microstructure of the second type exhibit a much higher wear resistance than those with the microstructure of the first type, the difference being more than an order of magnitude.
Keywords
Fe–Cr Alloys and Chromium Steels, Boride Coatings, Microstructure, Phase Identity, Chemical Composition, Microhardness, Dry Abrasive Wear Resistance
References
[01] L.G. Voroshnin, L.S. Lyakhovich: Boriding of Steel, Metallurgiya, Moskwa (1978), in Russian.
[02] A.G. Matuschka: Boronizing, Carl Hanser Verlag, Munchen (1980).
[03] A.K. Sinha: In A.K. Sinha (Ed.), Metals Handbook, ASM International, Metals Park, Ohio (1982) 844.
[04] H. Kunst, H. Schroll, R. Luetje, K. Wittel, E. Lugscheider, T. Weber, H.R. Eschnauer, C. Raub: in Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A16, Verlag Chemie, Weinheim (1991) 427.
[05] K. Holmberg, A. Matthews: Coatings Tribology, Elsevier, Amsterdam (2009).
[06] M. Hansen: Constitution of Binary Alloys, McGraw-Hill, New-York (1958).
[07] T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker: Binary Alloy Phase Diagrams, Vol. 1, American Society of Metals, Metals Park, Ohio (1986) 351.
[08] H. Okamoto: J. Phase Equil. Diffusion 25 (2004) 297.
[09] K. Genel, I. Ozbek, C. Bindal: Mater. Sci. Eng. A, 347 (2003) 311-314.
[10] I. Campos, J. Oseguera, U. Figueroa, J. A. García, O. Bautista, G. Kelemenis: Mater. Sci. Eng. A, 352 (2003) 261-265.
[11] M. Kulka, P. Pertek: Appl. Surf. Sci. 214 (2003) 278-288.
[12] C. Martini, G. Palombarini, M. Carbucicchio: J. Mater. Sci. 39 (2004) 933-937.
[13] E. Galvanetto, F. Borgioli, T. Bacci, G. Pradelli: Wear, 260 (2006) 825-831.
[14] S. Taktak: J. Mater. Sci. 41 (2006) 7590-7596.
[15] I. Campos, R. Rosas, U. Figuero, C. VillaVelázquez, A. Meneses, A. Guevara: Mater. Sci. Eng. A, 488 (2008) 562-568.
[16] X. Tian, Y. Lu, S.J. Sun, Z.G. Wang, W.Q. Hao, X.D. Zhu, Y.L. Yang: Mater. Sci. Techn. 24 (2008) 314-319.
[17] C.K.N. Oliveira, L.C. Casteletti, A. Lombardi Neto, G.E. Totten, S.C. Heck: Vacuum, 84 (2010) 792-796.
[18] J. Jiang, Y. Wang, Q. Zhong, Q. Zhou, L. Zhang: Surf. Coat. Techn. 206 (2011) 473-478.
[19] V.I Dybkov, W. Lengauer, K. Barmak: J. Alloys Compd. 398 (2005) 113-122.
[20] V.I. Dybkov, W. Lengauer, P. Gas: J. Mater. Sci. 41 (2006) 4948-4960.
[21] V.I Dybkov: Defect and Diffusion Forum 263 (2007)183-188.
[22] V.I Dybkov, L.V. Goncharuk, V.G. Khoruzha, K.A. Meleshevich, A.V. Samelyuk, V.R. Sidorko: Solid State Phenomena 138 (2008) 181-187.
[23] V.I. Dybkov: J. Mater. Sci. 42 (2007) 6614-6627.
[24] V.I. Dybkov, L.V. Goncharuk, V.G. Khoruzha, A.V. Samelyuk, V.R. Sidorko: Mater. Sci. Techn. 27 (2011) 1502-1512.
[25] V.I. Dybkov, V.R. Sidorko, V.G. Khoruzha, A.V. Samelyuk, L.V. Goncharuk: Poroshkovaya Metallurgiya (Powder Metallurgy, Ukraine) 7/8 (2011) 222-230.
[26] V.I. Dybkov, V.R. Sidorko, L.V. Goncharuk, V.G. Khoruzha, A.V. Samelyuk: Poroshkovaya Metallurgiya (Powder Metallurgy, Ukraine) 9/10 (2012) 24-37.
[27] V.I. Dybkov: Intern. J. Mater. Research 104 (2013) 617-629.
[28] V.I. Dybkov: Chemistry Journal 1(2015) 81-89.
[29] J. Brandstötter, W. Lengauer: J. Alloys Compd. 262-263 (1997) 390-396.
[30] L.I. Mirkin: Handbook on X-ray Analysis of Polycrystals, Fizmatgiz, Moskwa (1961) in Russian.
[31] S.S. Gorelik, L.N. Rastorguev, Yu.A.Skakov: X-ray and Electron-optical Analysis: Appendixes, Metallurgiya, Moskwa (1970) in Russian.
[32] V.A. Barinov, G.A. Dorofeev, L.V. Ovechkin, E.P. Elsukov, A.E. Ermakov: Phys. Status Solidi A, 123 (1991) 527-534.
[33] C. Gianoglio, C. Badini: J. Mater. Sci. 21(1986) 4331-4334.
[34] S. Okada, T. Atoda, I. Higashi: J. Solid State Chem. 68 (1987) 61-67.
[35] C. Gianoglio, G. Pradelli, M. Vallino: Metallurg. Sci. Techn. 1 (1983), 51-57.
[36] A. A. Bondar: In G. Effenberg, S. Ilyenko (Eds.), Landolt-Börnstein, Vol. 11D1, Springer, Berlin-Heidelberg (2007) 320-343.
[37] V.I. Dybkov: Reaction diffusion and solid state chemical kinetics, 1st ed., IPMS Publications, Kyiv (2002).
[38] V.I. Dybkov: Reaction diffusion and solid state chemical kinetics, 2nd ed., Trans Tech Publications, Zuerich (2010).
[39] V.I. Dybkov: Solid state reaction kinetics, IPMS Publications, Kyiv (2013). Free online version http://www.dybkov.kiev.ua.
[40] V.I. Dybkov: Chemical kinetics, IPMS Publications, Kyiv (2013). Free online version http://www.dybkov.kiev.ua.
[41] W. Seith: Diffusion in Metallen, Springer, Berlin (1955).
[42] K. Hauffe: Reaktionen in und an festen Stoffen, Springer, Berlin (1955).
[43] L.G. Yu, X.J. Chen, K.A. Khor, G. Sundararajan: Acta Mater. 53 (2005) 2361-2368.
[44] M. Keddam, S.M. Chentouf: Appl. Surf. Sci. 252 (2005) 393-399.
[45] M. Keddam: Intern. J. Mater. Research 100 (2009) 901-905.
[46] I. Campos-Silva, M. Ortiz-Dominguez, M. Keddam, N. Lapez-Prrusquia, A. Carmona-Vargas, M. Elias-Espinosa: Appl. Surf. Sci. 255 (2009) 9290-9295.
[47] H. Schmalzried: Chemical kinetics of solids, Verlag Chemie, Weinheim (1995).
[48] H. Mehrer: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, 2nd ed., Springer, Berlin-Heidelberg (2010).
[49] G. V. Motovilin, M. A. Masino, O. M. Suvorov: Automobile Materials, Transport, Moskwa (1989), in Russian.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.