International Journal of Materials Chemistry and Physics
Articles Information
International Journal of Materials Chemistry and Physics, Vol.1, No.2, Oct. 2015, Pub. Date: Aug. 23, 2015
Heat Treatment of Polymers: A Review
Pages: 132-140 Views: 4222 Downloads: 19878
Authors
[01] Ayman A. Aly, Mechanical Engineering Dept., College of Engineering, Taif University, Taif, Saudi Arabia.
Abstract
Heat treatment of the polymers is considered one of the most effective methods of modification to widen their applications. Heat treatment of polymers improves their mechanical and tribological properties. This effect is a result of crystal phase increase in the polymer structure, where the elastic part of polymer viscoelasticity increases causing significant increase in compressive strength and heat conductivity. The physical and mechanical properties of polyamides are considerably affected by the degree of crystallization, which can be controlled by the change of cooling rate during the production process. Presence of small particles such as fine silica dust in polyamide matrix can alter the nucleation and cause significant increase in tensile strength and hardness accompanied by reduction in the ductility and impact strength. It is essential to consider the variation of the morphology of the cast polymer because of the difference in the cooling rate from the surface to the center, where the outer surface will be less crystalline due to the rapid solidification rate and may be less resistant to wear.
Keywords
Heat Treatment, Polymers, Mechanical and Tribological Properties
References
[01] Ayman A. Aly, Zeidan E. B., Hamed A. M., Ali W. Y., "Effect of Heat Treatment On The Abrasion Resistance Of Thermoplastic Polymers", EGTRIB Journal Of The Egyptian Society of Tribology Volume 7, No. 4, 52 -64, October 2010
[02] Hongyu Wanga, Dongmei Zhua, Wancheng Zhoua and Fa Luoa, “Influence of heat treatment on electromagnetic properties of polyimide/carbon black composites”, Polym. Adv. Technol. 2014, 25 1616–1621
[03] Fouad H., Mourad A.-H. I., Barton D. C., “Effect of pre-heat treatment on the static and dynamic thermo-mechanical properties of ultra-high molecular weight polyethylene Polymer Testing 24, pp. 549 – 556, (2005).
[04] S. J. Gencur, C. M. Rimnac, S. M. Kurtz, Failure micromechanics during uniaxial tensile fracture of conventional and highly cross-linked ultra-high molecular weight polyethylenes used in total joint replacements, Biomaterials 24 (2003) 3947.
[05] Ayman A. Aly , M.M. Mahmoud, A. A. Omer, “Enhancement in Mechanical Properties of Polystyrene Filled with Carbon Nano Particulates (CNPS)”, World Journal of Nano Science and Engineering (WJNSE) , Vol. 2 No.2, 103-109, 2012.
[06] J. Tong, Y. Ma, M. Jiang, Effects of the wollastonite fibre modification on the sliding wear behaviour of the UHMWPE composites, Wear 225 (2003) 734.
[07] M. Es-saheb, A. A. Elzatahry, E. M. Sherif, A. S. Alkaraki, and E. kenawy, “A novel electrospinning application for polyvinyl chloride nanofiber coating deposition as a corrosion inhibitor for aluminum, steel, and brass in chloride solutions,” International Journal of Electrochemical Science, vol. 7, no. 7, pp. 5962–5976, 2012.
[08] S. Agarwal, A. Greiner, and J. H. Wendorff, “Functional materials by electrospinning of polymers,” Progress in Polymer Science, vol. 38, no. 6, pp. 963–991, 2013.
[09] M. P. Laurent, T. S. Johnson, J. Q. Yao, C.R. Blanchard, R.D. Crowninshield, In vitro lateral versus medial wear of knee prosthesis, Wear 255 (2003) 1101.
[10] J. S. Bergstrom, C. M. Rimnac, S. M. Kurtz, Prediction of multiaxial mechanical behaviour for conventional and highly crosslinked UHMWPE using a hybrid constitutive model, Biomaterials 24 (2003) 1365.
[11] S. H. Teoh, W. H. Chan, R. Thampuran, An elasto-plastic finite element model for polyethylene wear in total hip arthroplasty, Journal of Biomechanics 35 (2003) 323.
[12] A. Gomoll, T. Wanich, A. Bellare, J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE, Journal of Orthopaedic Research 20 (2003) 1152.
[13] S. Affatato, B. Bordini, C. Fagnano, P. Taddei, A. Tinti, A. Toni, Miniature specimen shear punch test for UHMWPE used in total joint replacements, Biomaterials 23 (2003) 1907.
[14] A. A. Edidin, C. M. Rimanac, V. M. Goldberg, S. M. Kurtz, “Mechanical behaviour, wear surface morphology, and clinical performance of UHMWPE acetabular components after 10 years of implantation, Wear 250 (2001) 152.
[15] A. P. Jose, L. Angel, G. B. Enrique, Fracture behaviour of UHMWPE in nano-implanted, self-aged knee prostheses after gamma irradiation in air, Biomaterials 22 (2001) 2107.
[16] Xingbin Yan, Tao Xu, Xiaobo Wang, Huiwen Liu, Shengrong Yang, “Microstructure and mechanical properties of hard carbon films prepared by heat treatment of a polymer on steel substrate” Surface & Coatings Technology 190, pp. 206 – 211, (2005).
[17] Asano, T., Balta Calleja, F. J., Flores, A., Tanigaki, M., Mina, M. F., Sawatari, C., Itagaki, H., Takahashi, H. & Hatta, I. Crystallization of Oriented Amorphous Poly(ethylene terephthalate) as revealed by X-ray Diffraction and Microhardness Polymer 40, 6475–6484 (1999).
[18] Bedia, E., Murakami, S., Kitade, T. & Kohjiya, S. Structure Formation of Polyethylene Naphthalate/Polyethylene Terephthalate Blends During Uniaxial Drawing Polymer 42, 7299–7306 (2001).
[19] Bellare, A., Cohen, R. E. & Argon, A. S., Development of texture in PET by plane- strain compression Polymer 34, 1393–1403 (1993).
[20] Göschel, U., Deutscher, K. & Abetz V., Wide angle X-ray scattering studies using an area detector: on crystallite orientation in semicrystalline PET structures Polymer 37, 1–6 (1996).
[21] Crist, B., Semicrystalline Polymers: Plastic Deformation, in: Encyclopedia of Materials: Science and Technology, Volume 9, K. H. J. Buschow et al., eds., Elsevier, New York, 2001, pp. 8427 - 8432.
[22] Lee, B. J., Argon, A. S., Parks, D. M., Ahzi, S. & Bartczak, Z., Simulation of large strain plastic deformation and texture evolution in high density polyethylene. Polymer 34, pp. 3555 - 3575 (1993).
[23] Bellare, A., Cohen, R. E. & Argon, A. S. Development of Texture in Poly (Ethylene-Terephthalate) By Plane-Strain Compression. Polymer 34, pp. 1393-1403, (1993).
[24] Bartczak, Z., Argon, A. S. & Cohen, R. E. Texture Evolution in Large-Strain Simple Shear Deformation of High-Density Polyethylene. Polymer 35, pp. 3427-3441, (1994).
[25] Kosicki, J. E., EUROTRIB’81 Congress Papers, Vol. IV, Warsaw, (1981).
[26] Kosicki, J. E., Proceedings Of The V Int. Congress on Tribology, EUROTRIB’ 89, Vol. 2, June 13 - 16, 1989, Espo, Finland, pp. 404 - 408, (1989).
[27] Jianling Li, Hardaker, S., Gregory, R. V. and Msamp, E., Lab Connections, (1999).
[28] Ade H., Winesett D. A., Smith A. P., Qu S., Ge S., Sokolov J. and Rafailovich M., EUROPHYSICS LETTERS, 45 (4), pp. 526 - 532, (1999).
[29] Genzer J. and Kramer E. J., Phys. Rev. Lett., 78, pp. 4946-4949, (1997).
[30] Affrossman S., Henn G., O'Neill S. A., Pethrick R. A. and Stamm M., Macromolecules, 29, pp. 5010-5016, (1996).
[31] Kumacheva E., Li L., Winnik M. A., Shinozaki D. M. and Cheng P. C., Langmuir, 13, pp. 2483-2489, (1997).
[32] Straub W., Bruder F., Brenn R., Krausch G., Bielefeldt H., Kirsch A., Marti O., Mlynek J. and Marko J. F., Europhys. Lett, 29, pp. 353-358, (1995).
[33] Tanaka K., Takahara A. and Kajiyama T., Macromolecules, 29, pp. 3232-3239, (1996).
[34] Walheim S., Boltau M., Mlynek J., Krausch G. and Steiner U., Macromolecules, 30, pp. 4995-5003, (1997).
[35] Karim A., Slawecki T. M., Kumar S. K., Douglas J. F., Satija S., Han C. C., Russell T. P., Liu Y., Overney R., Sokolov J. and Rafailovic M. H., Macromolecules, 31, pp. 857-862, (1998).
[36] Mark J. E., Physical Properties of Polymers Handbook (Woodbury, New York), (1996).
[37] Wagner A. J. and Yeomans J. M., Phys. Rev. Lett., 80, p. 1429-1432, (1998).
[38] Zheng X., Rafailovich M. H., Sokolov J., Y S., Schwarz S. A., Sauer B. and Rubinstein M., Phys. Rev. Lett., 79, p. 1453, (1997).
[39] Li Z., Tolan M., Hohr T., Kharas D., Qu S., Sokolov J., Rafailovich M. H., Lorenz H., Kotthaus J. P., Wang J., Sinha S. K. and Gibaud A., Macromolecules, 31, pp. 1915-1920, (1998).
[40] Shin K., Wang H., Satija S. K., Han C. C., Josell D., and Bonevich J. E., JOURNAL OF APPLIED PHYSICS, 94, 3, August, (2003).
[41] Miller R. D., Hedrick J. L., Yoon D. Y., Cook R. F., and Hummel J. P., MRS Bull. 22, p. 44 (1997).
[42] Bischof J., Scherer D., Herminghaus S., and Leiderer P., Phys. Rev. Lett. 77, p. 1536, (1996).
[43] Cole D. H., Shull K. R., Rehn L. E., and Baldo P., Phys. Rev. Lett. 78, p. 5006, (1997).
[44] Wang J., Tolan M., Seeck O. H., Sinha S. K., Bahr O., Rafailovich M. H., and Sokolov J., Phys. Rev. Lett. 83, 564 (1999).
[45] Weber R., Zimmermann K. M., Tolan M., Stettner J., Press W., Seeck O. H., Erichsen J., Zaporojtchenko V., Strunskus T., and Faupel F., Phys. Rev. E 64, p. 061508, (2001).
[46] Faupel F., Zaporojtchenko V., Strunskus T., Erichsen J., Dolgner K., Thran A., and Kiene M., Workshop on Polymer Metallization, Montreal, (2001).
[47] Thran A., Kiene M., Zaporojtchenko V., and Faupel F., Phys. Rev. Lett. 82, p. 1903, (1999).
[48] Green P. F., Palmstrem C. J., Mayer J. W., and Kramer E. J., Macromolecules 18, p. 501, (1985).
[49] Reiter G., Hüttenbach S., Foster M., and Stamm M., Macromolecules 24, p. 1179, (1991).
[50] Lin B., Morkved T. L., Meron M., Huang Z., Viccaro P. J., Jaeger H. M., Williams S. M., and Schlossman M. L., J. Appl. Phys. 85, 3180 (1999).
[51] Ade H., “Partial Miscibility in Polymer Blends”, the Polymer X - ray Spectromicroscopy Research, (1999).
[52] X. Zhang et al. J. Struc. Biol. 116, 335 (1996).
[53] Ayoub N. M., M. Sc. Thesis, Eindhoven University of Technology, Faculty of Mechanical Engineering, (2000).
[54] Aly W. Y., Khattab A. A. and Salem T. M., Proc. of the Int. Conf. of Advances in Materials and Processing Technologies, AMPT 95, Aug. 1995, pp. 596 - 605, (1995).
[55] Aly W. Y., Mousa M. O. and Khashaba M. I., Bulletin of the Faculty of Engineering, Assiut University, Vol. 2, July 1992, pp. 1 - 13, (1992).
[56] Khattab A. A., Proceeding of The Fourth Conference of The Egyptian Society of Tribology, EGTRIB'95, pp. 457 - 464, Cairo, Egypt, (1995).
[57] Aly W. Y., Synthetic Lubrication, Vol. 9, No. 4, January 1993, pp. 289 - 298, (1993).
[58] Aly W. Y., Synthetic Lubrication, Vol. 10, No. 4, Jan. 1994, pp. 309 - 322, (1994).
[59] Khattab A. A., Proceedings of The Fourth Conference of The Egyptian Society of Tribology, EGTRIB'95, pp. 465 - 473, Cairo, Egypt, (1995).
[60] Aly A. A., First International Conference On Mechanical Engineering Advanced Technology For Industrial Production, ASSIUT, EGYPT, MEATIP 1, Dec. 27 - 29, (1994).
[61] Brydon J. A., “Plastic Material”, Butterworths, London, (1975).
[62] Sarkar A. D., “Friction and Wear”, Academic Press, London, (1980).
[63] S. Tobe, M. Yamane, T. A. Stolarski, Friction and wear of PTFE reservoirs embedded into metallurgical coatings, J. Eng. Tribol. 219 (2005) 107.
[64] S. Tobe, M. Yamane, T.A. Stolarski, Wear and friction mechanism of PTFE reservoirs embedded into thermal sprayed metallic coatings, Wear 263 (2007) 1364–1374.
[65] Sophie Bistac, Achraf Ghorbal, and Marjorie Schmitt, "Friction of polystyrene: Consequence on nano-wear", Progress in Organic Coatings 55 (2006) 345–354.
[66] S. V. Gangal, Tetrafluoroethylene polymers, in: H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges (Eds.), Encyclopedia of Polymer Science and Engineering, vol.16, second ed., Wiley, New York, 1989, pp. 577–600.
[67] W. H. Crandell, Evaluation of silican rubber modified with Teflon, RubberWorld (1955) 236–240.
[68] M. H. Kaufman, J. Gonzales, Reinforcement of fluoroelastomers with halopolymers, Rubber Chemistry and Technology 41 (1968) 527–532.
[69] R. A. Morgan, C. W. Stewart, E.W. Thomas, W. M. Stahl, Reinforcement with fluoroplastic additives, RubberWorld 204 (1991) 25–28.
[70] J. G. Drobny, Fluoropolymers in automotive applications, Polymers forAdvanced Technologies 18 (2007) 117–121.
[71] C. W. Bunn, E.R. Howells, Structures of molecules and crystals of fluorocarbons, Nature 4429 (1954) 549–551.
[72] K. Tanaka, S. Kawakami, Effect of various fillers on the friction and wear of PTFE-based composites, Wear 79 (1982) 221–234.
[73] J. B. Johnson, A fluorocarbon internal lubricant, Rubber Age (1963) 754–757.
[74] Z. Zhang, W. Liu, Q. Xue, Effect of various kind of fillers on the tribological behaviour of polytetrafluoroethylene composites under dry and oil-lubricated conditions, Journal of Applied Polymer Science 80 (2001) 1891–1897.
[75] D. L. Burris, W. G. Sawyer, Tribological behaviour of PEEK components with compositionally graded PEEK/PTFE surfaces, Wear 262 (2006) 220–224.
[76] H. Su, Z. Zhang,W. Liu, Study on the friction and wear properties of glass fabric composites filled with nano and micro-particles under different conditions, Materials Science and Engineering A 392 (2005) 359–365.
[77] R. Franke, D. Lehmann, K. Kunze, Tribological behaviour of new chemically bonded PTFE polyamide compounds, Wear 262 (2007) 242 - 252.
[78] D. Lehmann, B. Hupfer, U. Lappan, G. Pompe, L. H, D. Jehnichen, A. Janke, U. Geiكler, R. Reinhardt, K. Lunkwitz, R. Franke, K. Kunze, New PTFE-polyamide compounds, Designed Monomers and Polymers 5 (2002) 317 - 324.
[79] D. Lehmann, B. Hupfer, U. Lappan, U. Geier, R. Reinhardt, K. Lunkwitz, Neue polytetrafluoroethylen - polyamid compounds, Material wissenschaftund Werks tofftechnik 31 (2000) 666 - 668.
[80] E. Haberstroh, C. Linhart, K. Epping, T. Schmitz, Verbesserte tribologische eigenschaften von elastomeren durch PTFE pulver, Kautschuk Gummi Kunststoffe 59 (2006) 447 - 453
[81] M. Sohail Khan, R. Franke, U. Gohs, D. Lehmann, and G. Heinrich, "Friction and wear behaviour of electron beam modified PTFE filled EPDM compounds", Wear 266 (2009) 175 - 183
[82] S. Kahlen, G.M. Wallner b, R.W. Lang, "Aging behavior of polymeric solar absorber materials: Engineering plastics", Solar Energy (2010) Article In Press.
[83] M’hamed Boutaous, Nadia Brahmia, Patrick Bourgin M’hamed Boutaous, Nadia Brahmia, and Patrick Bourgin, "Parametric study of the crystallization kinetics of a semi-crystalline polymer during cooling", C. R. Mecanique 338 (2010) 78 - 84.
[84] Ayman A. Aly, Zeidan, E.B., A. A. Alshennawy, Ali Elmasery, Wahid A Wasel, “Friction and Wear of Polymer Composites Filled by Nano Particles: A Review,” World Journal of Nano Science and Engineering (WJNSE), Vol. 2 No.1, 32-39, 2012, USA.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.