International Journal of Materials Chemistry and Physics
Articles Information
International Journal of Materials Chemistry and Physics, Vol.1, No.3, Dec. 2015, Pub. Date: Sep. 13, 2015
Synthesis and Acoustical Study of Pyrazolo Quinazoline Derivatives in N, N-dimethyl Formamide at Different Temperatures
Pages: 229-241 Views: 4079 Downloads: 1396
[01] Shipra Baluja, Physical Chemistry Laboratory, Department of Chemistry, Saurashtra University, Rajkot (Gujarat), India.
[02] Paras Ramavat, Physical Chemistry Laboratory, Department of Chemistry, Saurashtra University, Rajkot (Gujarat), India.
[03] Kajal Nandha, Physical Chemistry Laboratory, Department of Chemistry, Saurashtra University, Rajkot (Gujarat), India.
Some new pyrazolo quinazoline derivatives have been synthesized and their structure confirmation was done by spectroscopic methods such as IR, 1H NMR and 13C NMR. The acoustical properties of these synthesized derivatives were done in N, N-dimethyl formamide (DMF) solutions of different concentration by measuring density, sound velocity and viscosity at different temperatures. The density and sound velocity were measured by using Anton Paar Density and Sound Velocity meter (DSC 5000M) whereas viscosity has been measured by the Ubbelohde viscometer. From these experimental data, some acoustical parameters such as adiabatic compressibility (κs), intermolecular free length (Lf), internal pressure (π), free volume (Vf), solvation number (Sn), apparent molar compressibility (fk), apparent molar volume (fv), etc., have been evaluated. The results are interpreted in terms of solute-solute and solute-solvent interactions to understand the behavior of synthesized compounds in solutions. It is observed that sound velocity and solvation number increase with increase in concentration whereas intermolecular free path length and adiabatic compressibility decrease with increase in concentration. These studied parameters suggest that as increase in concentration of solute, solute-solvent interaction increases. The positive values of solvation number are due to appreciable solvation of compounds in DMF. The evaluated apparent properties also confirm the predominance of solute-solvent interactions in DMF solutions of studied compounds.
Pyrazolo Quinazoline Derivatives, Ultrasonic Velocity, Apparent Molar Compressibility, Apparent Molar Volume, N, N-dimethyl Formamide
[01] K. R. A. Abdellatif, E. K. A. Abdelall, M. A. Abdelgawad, R. R. Ahmed, R. B. Bakr,, Molecules, 19 (2014) 3297-3309.
[02] M. A. Ali, M. Shaharyar, A. A. Siddiqui, Eur. J. Med. Chem., 42 (2007) 268-275.
[03] M. Garg, M. Chauhan, P. K. Singh, J. M. Alex, R. Kumar, Eur. J. Med. Chem., 97 (2015) 444-461.
[04] P. Kumar, N. Chandak, P. Kaushik, C. Sharma, D. Kaushik, K. R. Aneja, P. K. Sharma, Med. Chem. Res., 21 (2012) 3396-3405.
[05] A. A. Abu-Hashem, M. A. Gouda, F. A. Badria, Eur. J. Med. Chem., 45 (2010) 1976-1981.
[06] P. M. S. Bedi, V. Kumar, M. P. Mahajan, Bioorg. Med. Chem. Lett., 14 (2004) 5211-5213.
[07] A. M. Khalil, M. A. Berghot, M. A. Gouda, Eur. J. Med. Chem., 44 (2009) 4434-4440.
[08] I. Khan, A. Ibrar, W. Ahmed, A. Saeed, Eur. J. Med. Chem., 90 (2015) 124-169.
[09] D. Wang, F. Gao, Review article: Wang and Gao Chem. Central J., (2013) 7-95.
[10] R. Storer, C. J. Ashton, A. D. Baxter, M. M. Hann, C.L.P. Marr, A. M. Mason, C.-L. Mo, P. L. Myers, S.A. Noble, C. R. Penn, N.G. Weir, J.M. Woods, P.L. Coe, Nucleosides & Nucleotides, 18 (1999) 203–216.
[11] V. K. Pandey, L. P. Pathak, S. K. Mishra, Ind. J. Chem., 44 (2005) 1940-1944.
[12] N. V. Kavitha, K. Divekar, B. Priyadarshini, S. Gajanan, M. Manjunath, D. Pharm. Chem., 3(2011)55-62.
[13] M. G. Ferlin, B. Gatto, G. Chiarelotto, M. Palumbo, Bioorg. Med. Chem., 8 (2000) 1415-1422.
[14] A. Mahamoud, J. Chevalier, A. Davin-Regli, J. Barbe, J. M. Pages, Current Drug Targets, 7 (2006) 843-847.
[15] S. J. McNeil, R. A. McCall, Ultra. Sonochem. 18 (2011) 401-406.
[16] Z. J. Dolatowski, J. Stadnik, D. Stasiak, Acta Sci. Pol., Technol. Aliment. 6 (2007) 89-99.
[17] A. Abou-Okeil, A. El-Shafie, M. M. El Zawahry, Ultras. Sonochem., 17 (2010) 383–390.
[18] C. Petrier, A. Francony, Water Sci. Techn., 35 (1997) 175–180.
[19] M. Patil, V. Onuora, Injury, 25 (1994) 177-178.
[20] V. S. Prasad, E. Rajagopal, N. M. Murthy, J. Mol. Liq., 124 (2006) 1-6.
[21] S. C. Bhatia, R. Bhatia, G. P. Dubey,, Phys. Chem. Liqds, 48 (2010) 199-230.
[22] A. Ali, S. Hyder, A. K. Nain, J. Mol. Liqds., 79 (1999), 89-99.
[23] D. R. Andrews, San Diego (2001) 269-287.
[24] S. Chauhan, K. Kumar, B. S. Patil, Ind. J. Pure Appl. Phys., 51 (2013) 531-541.
[25] A. M. E. Raj, L. B. Resmi, V. B. Jothy, M. Jayachandran, C. Sanjeeviraja, Fluid Phase Equilib., 281 (2009) 78-86.
[26] S. Baluja, N. Vekariya and J. Movaliya, Iran. J. Chem. Chem. Eng., 27 (2008) 129-135.
[27] S. Baluja, R. Bhalodiya, R. Gajera, Int. J. Appl. Chem., 5 (2009) 47-55.
[28] S. Baluja, S. Oza, Fluid Phase Equilib., 4933 (2002) 1-8.
[29] S. Baluja, R. Bhalodiya, Russ. J. Phy. Chem. A, 87 (2013) 2176-2180.
[30] J.A. Riddick, W.B. Bunger, T. Sakano, New York, (1986).
[31] M. Hasan, A. P. Hiray, U. B. Kadam, D. F. Shirude, K. J. Kurhe, A. B. Sawant, J. Sol. Chem., 40 (2011) 415-429.
[32] C. V. Suryanarayana, J. Kuppuswamy, Role of internal pressure in the chemistry of electrolyte solutions, J. Acoust. Soc., 9 (1981) 4-8.
[33] S. Bagchi, S. K. Nema, R. P. Singn, Eur. Polym. J., 25 (1989) 441-444.
[34] R. Palani, K. Jayachitra, Ind. J. Pure Appl. Phys., 46 (2008) 251-254.
[35] F.T. Gucker, Chem. Rev., 13 (1933) 111-130.
[36] D.O. Masson, Magazine. 8 (1929) 218-235.
[37] R. Gopal, M. A. Siddiqi, J. Phys. Chem., 73 (1969) 3390-3394.
[38] N. Saha, B. Das, D. K. Hazra, J. Chem. Eng. Data, 40 (1995) 1264-1266.
[39] C. H. Bachem, Z. Physik, 101 (1936) 541-577.
[40] P. S. Nikam, H. R. Ansari, M. Hasan, J. Pure Appl. Ultrason., 20 (1998) 75-78.
[41] D. Papamatthaiakis, F. Aroni, V. Havredaki, J. Chem. Thermodyn., 40 (2008) 107–118.
[42] A. Pal, A. Kumar, J. Chem. Eng. Data., 50 (2005) 856-862.
[43] V. K. Syal, B. S. Patial, S. Chauhan, Ind. J. Pure Appl. Phys., 37 (1999) 366-370.
[44] S. Baluja, A. Shah, Fluid Phase Equili., 215 (2004) 55-59.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.