International Journal of Materials Chemistry and Physics
Articles Information
International Journal of Materials Chemistry and Physics, Vol.1, No.3, Dec. 2015, Pub. Date: Sep. 14, 2015
Structural and Electrical Properties of Li2O-TiO2 System in Presence of Water
Pages: 242-245 Views: 3426 Downloads: 1092
[01] R. Alvarez Roca, LIEC, Chemistry Deparment, Federal University of São Carlos, São Carlos-SP, Brazil.
[02] F. Guerrero Zayas, Physics Department, ICE, Federal University of Amazonas, Manaus-AM, Brazil.
The influence of Li2O and humidity on structural and electrical properties of TiO2 ceramics are presented for two different concentrations (0.02 and 0.06 mol%). The X-Ray analysis shows a single phase compound for 0.02, due to the Li incorporation into the rutile, while the pattern for the 0.06 composition shows two phases. The structural effects are corroborated by Infrared Spectroscopy where the vibrational modes are discussed for each composition. The electrical behavior is also shown at room temperature and for each composition using a.c. measurement. The effect of Li2O addition on water adsorption mechanism as well as the humidity sensibility is analyzed. An equivalent circuit, from impedance spectroscopy, is proposed and the physical processes that take place inside the ceramic are described.
TiO2, Humidity, Electrical Properties
[01] Yamazoe, N., Simizu, Y., (1986). Humidity sensors: principles and applications. Sens. Actuators, 10: 379–398.
[02] Kulwicki, B.M., (1991). Humidity sensors. J. Am. Ceram. Soc., 74 (4) 697–708.
[03] Traversa, E. (1995). Ceramic sensors for humidity detection: the state of-the-art and future developments. Sens. Actuators B, 23: 135–156.
[04] Chen, Z. and Lu, C. (2005). Humidity Sensors: A Review of Materials and Mechanisms. Sensor Lett., 3: 274-295.
[05] Carpenter, M. A., Mathur, S. and Kolmakov, A. (Eds.), (2013). Metal Oxide Nanomaterials for Chemical Sensors, Springer, NY.
[06] Farahani, H., Wagiran, R. and Hamidon, M. N. (2014). Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors, 14: 7881-7939.
[07] Katayama, K., Hasegawa, K., Takahashi, Y., Akiba, T., Yanagida, H. (1990). Humidity Sensitivity of Nb2O5-Doped TiO2 Ceramics. Sens. Actuators A Phys., 24: 55–60.
[08] Yeh, Y. Ch., Tseng, T.Y. and Chang, D. (1990). Electrical Properties of TiO2-K2Ti6O13 Porous Ceramic Humidity Sensor. J. Am. Ceram. Soc. 73: 1992-1998.
[09] Jain, M.K., Bhatnagar, M.C., Sharma, G.L. (1999). Effect of Li doping on ZrO2–TiO2 humidity sensor, Sens. Actuators B 55: 180–185.
[10] Ying, J., Wan, C., He, P. (2000). Sol-Gel Processed TiO2-K2O-LiZnVO4 Ceramic Thin Films as Innovative Humidity Sensors. Sens. Actuators B Chem. 62: 165–170.
[11] Zaleska, A. (2008). Doped-TiO2: A Review, Recent Patents Eng., 2: 157-164.
[12] Anbia, M., and Fard, S.E.M. (2011). Improving Humidity Sensing Properties of Nanoporous TiO2-10 mol% SnO2 Thin Film by Co-Doping with La3+ and K+. Sens. Actuators B Chem., 160: 215-221.
[13] Golonka, L.J., Licznerski, B. W., Nitsch, K. and Teterycs H. (1997). Thick-film humidity sensors, Meas. Sci. Technol. 8:92-98.
[14] Suresh, A. M. E., Magdalane, C. M. and Nagaraja, K S. (2002). Zinc(II) Oxide–Yttrium(III) Oxide Composite Humidity Sensor Phys. Stat. Sol. (a) 191: 230-234.
[15] Geng, W., Wang, R.; Li, X., Zou, Y., Zhang, T., Tu, J., He, Y., and Li, N. (2007). Humidity Sensitive Property of Li-Doped Mesoporous Silica SBA-15. Sens. Actuators B Chem., 127: 323–329.
[16] Montesperelli, G., Pumo, A., Traversa, E., Bearzotti, A., Montenero, A., and Gnappi, G. (1995). Sol-Gel Processed TiO2-Based Thin Films as Innovative Humidity Sensors. Sens. Actuators B Chem., 25: 705–709.
[17] Garcia-Belmonte, G., Kytin, V., Dittrich, T. and Bisquert, J. (2003). Effect of humidity on the ac conductivity of nanoporous TiO2, J Appl. Phys., 94: 5261-5264.
[18] Wang, Z., Shi, L., Wu, F., Yuan, S., Zhao, Y. and Zhang, M. (2011). The sol–gel template synthesis of porous TiO2 for a high performance humidity sensor, Nanotechnology, 22: 275502.
[19] Alvarez Roca, R., Guerrero, F., Eiras, J. A. and Guerra, J.D.S. (2015). Structural and electrical properties of Li-doped TiO2 rutile ceramics, Ceram. Int., 41: 6281–6285.
[20] Alvarez Roca, R., Guerrero, F., Garcia-Belmonte, G. and Bisquert, J. (2002). Study of the humidity effect in the electrical response of the KSbMoO6 ionic conductive ceramic at low temperature, J. Mater. Sci. Eng., B 90: 291-295.
[21] Faia, P.M., Ferreira, A.J., and Furtado, C.S. (2009). Establishing and Interpreting an Electrical Circuit Representing a TiO2-WO3 Series of Humidity Thick Film Sensors. Sens. Actuators B Chem., 140: 128–133.
[22] Koudriachova, M. V., Harrison, N. M. and de Leeuw, S. W. (2002) Density-functional simulations of lithium intercalation in rutile. Phys. Rev., B 65: 235423.
[23] Burdett, J. K., Hunghbanks, T., Miller, G. J., Richardson, J. W. and Smith, J. V. (1987). Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, J. Am. Chem. Soc., 109: 3639-3646.
[24] van Hassel, B. A., Boukam, B. A. and Burggraaf, A. J. (1992). Oxygen transfer properties of ion-implanted yttria-stabilized zirconia Solid. State Ionic 53-56: 890-903.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.