International Journal of Materials Chemistry and Physics
Articles Information
International Journal of Materials Chemistry and Physics, Vol.1, No.3, Dec. 2015, Pub. Date: Dec. 6, 2015
Sintering Effect on Structural and Electrical Properties of ZnxFe1-xFe2O4 Ferrite Nano-particles
Pages: 366-369 Views: 2320 Downloads: 917
[01] Amarjeet , Department of Physics, JVMGRR College, Ch. Dadri, India.
[02] Vinod Kumar, Department of Physics, DCR University of Science and Technology, Murthal, India.
ZnxFe1-xFe2O4 nano spinel ferrites with composition x = 0.2, 0.6, 0.8 and 1 were prepared by chemical co-precipitation method keeping pH equal to 8. Synthesized samples were sintered at 673 K and 873 K for two hours each separately in a muffle furnace at slow rate of heating and cooling. Sintered samples were characterized by Fourier transform infra-red (FTIR) at room temperature in the range 4000 cm-1 to 400 cm-1. The recorded infra-red (IR) absorption spectra provided the structural information of sintered samples. Fourier transform infra-red absorption spectra confirmed the single phase formation and cubic spinel structure existence in the all sintered samples. The dc conductivity decreases with increase in sintering temperature. Direct current (DC) conductivity first increases with increase in zinc content and then decreases with further increase in zinc content. The study of temperature dependence behaviour showed semiconducting nature of the sintered samples.
Nano, Spinel Ferrites, Co-precipitation, Sintering, FTIR
[01] J. Kulikowski, J. Magn. Magn. Mater. 41, 56 (1984).
[02] A. Verma and R. Chatterjee, J. Magn. Magn. Mater. 306, 313 (2006).
[03] W. Y. Huang, P. Y. Du, W. J. Weng and G. R. Han, J. Mater. Sci. Eng. 23, 528 (2005).
[04] Vinod Kumar, Anu Rana, M. S. Yadav and R. P. Pant, J. Mag. Mag. Mater. 320, 1729 (2008).
[05] Erum Pervaiz and I. H. Gul, J. Mag. Magn. Mat. 324 (22), 3695 (2012).
[06] B. P Jacob, Smitha Thankachan, Sheena Xavier and E. M. Mohammed, Phys Scripta. 84, 045702 (2011).
[07] O. S. Josyulu and J. Sobhanadri, Phys Stat Sol., (a) 65(2), 479 (1981).
[08] H. I. Hsiang, Chih-Cheng Chen and W. Yue Tsai, Appl. Surface Sci. 245(1-4), 252 (2005).
[09] J. Balavijayalakxmi, N. Suryanarayanan and R. Jayaprakash, J. Mag. Magn. Mater. 362, 135 (2014).
[10] R. D. Shannon, Acta Cryst. A32, 751 (1976).
[11] F. J. W. Verwey and J. H. De Boer, Rec. Trav. Chem. Pays Bas. 55, 531 (1936).
[12] G. K. Joshi, S. A. Deshpande, A. Y. Khot, S. R. Sawant, Ind. J. Appl. Phys. A 61, 251 (1987).
[13] B. V. Bhise, M. B. Dongar, S. A. Patil, S. R. Sawant, J. Mater. Sci. Lett. 10 (1991).
[14] G. K. Joshi, A. Y. Khot, S. R. Sawant, Solid State Commun. 65 (1988).
[15] H. D. Patil, R. V. Upadhyay, N. R. Shamkumar, R. G. Kulkarni, Solid State Commun. 81, 1001 (1992).
[16] M. N. Khan, A. Ahmad, V. S. Darshane, J. Mater. Sci. 24, 163 (1989).
[17] M. Arshed, N. B. Buit, M. Siddique, A. Anwar-Ul Islam, T. Abbas, M. Ahmed, Solid State Commun. 84, 717 (1992).
[18] F. Grandjean, A. Gerard, Solid State Commun. 25, 679 (1978).
[19] T. E. Whall, N. Salerno, Y. G. Proykova, V. A. M. Babers, Philos. Mag. 53, L167 (1986).
[20] J. S. Bijal, S. Phanjouban, D. Kothari, C. Prakash, P. Kishan, Solid State Commun. 83, 679 (1992).
[21] R. B. Jotania, R. V. Upadhay, R. G. Kulkarni, IEEE Trans. Magn. 28, 1889 (1992).
[22] P. V. Reddy, T. S. Rao, S. M. D. Rao, J. Less-Common Met. 79, 191 (1981).
[23] Naveen Kumari, Vinod Kumar, S. K. Singh, Cer. Inter. 40, 12199 (2014).
[24] B. Gillot, Phys. Stat. Solidi (a) 76, 601 (1983).
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.