International Journal of Plant Science and Ecology
Articles Information
International Journal of Plant Science and Ecology, Vol.6, No.3, Sep. 2020, Pub. Date: Sep. 24, 2020
Impacts of Growth Regulators & Moringa Extract Pre-treatment on Germination, Growth & Pigments in Two Tomato Cultivars Under Salinity Stress
Pages: 42-55 Views: 27 Downloads: 6
[01] Ibtisam Mohammed Ali Alsudays, Department of Biology, Faculty of Applied Science, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia; Department of Biology, Unaizah College of Sciences and Arts, Qassim University, Al Qassim, Kingdom of Saudi Arabia.
[02] Hameda El Sayed Ahmed El Sayed, Department of Biology, Faculty of Applied Science, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia.
The aimed of this studies to explain the role of Ascorbic acid (ASA), Gibberellic Acid (GA3) & Moringa oleifera Leaf Extract (MLE) for alleviates the adversely effect of salinity stress on two cultivars (cv. Cobra-resistant and cv. Newton-sensitive) of tomato (Lycopersicon esculentum, L.) plant which collected from Al-Dakhil Agriculture and Trading Establishment, Al-Qassim City, KSA. The tomato seeds soaked in in ASA 0.75 mM; GA3 0.05 mM and Moringa Extract MLE 5% before germinated for 12 hours in the dark. The seeds planted in trays of cork contain 218 eyes for 14 days, seedlings plant transplanted to plastic containers containing a mixture of sand/peat-moss (1:2). The tomato seeds watering using distilled water until the true leaf appearance then transferred to a larger pots which containing the same mixture of soil as above. The experiment was carried out under greenhouse conditions with temperature 18°C±1°C (night) & 22°C±2°C (day) and relative humidity varied between 60-70%. The tomato plant irrigated with NaCl salinity (0.0, 50, 100, 150, 200 mM NaCl) alternative with Hoagland nutrient solution. Salinity treatments decreased seeds germination rate (%), shoot height and root depth; fresh and dry weights; water relation (succulence) and all Photosynthetic pigments content (chlorophyll a, chlorophyll b, carotenoids, and total pigment contents) while the dry matter content (%) increased significantly with increasing NaCl salinity. Whereas the seeds soaking before germination in ASA, GA3 & MLE get an increased seeds germination rate (%), shoot height and root depth; fresh and dry weights; water relation (succulence and dry matter contents) and all Photosynthetic pigments content (chlorophyll a, chlorophyll b, carotenoids, and total pigment contents) compared with control. The results indicated that the plant growth parameters increased significantly in the present of ASA, GA3 & MLE under non-saline and salinity stress thereby reduces the harmful effects of salinity and increases resistance to salinity more than in the absent of ASA, GA & MLE compared with control. The application of soaking tomato seeds before germination in GA3, MLE, ASA respectively get evidence to the tolerance effect of salinity stress.
Growth Regulators, Ascorbic Acid, Gibberellic Acid, Moringa, Germination, Growth, Chloroplast Pigments, Tomato, Salinity Stress
[01] Gupta, B.; Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics. Pages 1-18. doi: 10.1155/2014/701596.
[02] Munns, R.; Tester, M. (2008): Mechanisms of salinity tolerance. Annual Review of Plant Biology. Volume 59; Pages 651- 681.
[03] Abdel Latef, A. H.; Abu Alhmad, M. F.; Kordrostami, M.; Abo–Baker, A. A.; Zakir, A. (2020): Inoculation with Azospirillum lipoferum or Azotobacter chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. Journal of Plant Growth Regulation. Volume (22).
[04] Jamil, M.; Lee, D.; Jung, K.; Ashraf, M.; Lee, S.; Rha, E. (2006). Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. Journal of Central European Agriculture. Volume 7 (2); Pages 273-282.
[05] Yadav, D.; Shrivastava, N.; Shrivastava. V. (2012): experimental investigation of performance parameters of single cylinder four stroke di diesel engine operating on neem oil biodiesel and its blends. international journal mechanical engineering. Volume 1 (3); Pages 479-485.
[06] Hernandez, J. A.; Olmos, E.; Corpas, F. J.; Sevilla, F.; Del Rio, L. A. (1995): Salt induced oxidative stress in chloroplasts of pea plants. Plant Science. Volume105; Pages151-167.
[07] Hanin, M.; Ebel, C.; Ngom, M.; Laplaze, L.; Khaled Masmoudi, K. (2016): New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Frontiers in Plant Science.
[08] Yurtseven, E.; Kesmez, G. D.; Unlukara. A. (2005): The effects of water salinity and potassium levels on yield, fruitquality and water consumption of a native central Anatolian tomato species (Lycopersicon esculentum). Agricultural Water Management. Volume 78 (1-2); pages 128- 135.
[09] Agong, S. G.; Kingetsu. M.; Yoshida, Y.; Yazaw, S.; Masuda, M. (2003): Response of tomato genotypes to induced salt stress. Africa Crop Science. Journal. Volume 11 (2); Pages 133-142.
[10] Saito, T.; Matsukura, C.; Ban, Y.; Shoji, K.; Sugiyama, M.; Fukuda, N.; Nishimura, S. (2008): Salinity stress affects assimilate metabolism at the gene-expression level during fruit development and improves fruit quality in tomato (Solanum lycopersicum, L.). Journal of the Japanese Society for Horticultural Science. Volume 77 (1); Pages 61-68.
[11] Watanabe, S. (2006): New growing system for tomato with low node-order pinching and high-density planting. Proceed. Vegetable and Tea Sciencence. Volume 3; pages 91-98.
[12] Gill, S. S.; Narendra Tuteja, N. (2010): Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. Volume 48; Pages 909-930.
[13] Naz, A.; Chowdhury, A.; Mishra, B. K.; Gupta, S. K. (2016): Metal pollution in water environment and the associated human health risk from drinking water: A case study of Sukinda chromite mine, India. Human and Ecological Risk Assessment: An International Journal. Pages 1433-1455.
[14] Barth, T. F.; Hummel, M; Bentink, S.; Berger, H. (2006):A Biologic definition of Burkitt’s Lymphoma from transcriptional and genomic profiling. The new england journal of medicine. volume. 354; Pages 23.
[15] Shao, L. C.; Palaniapan, M.; Tan, W. W.; Khine, L. (2008 ): Nonlinearity in micromechanical free–free beam resonators: modeling and experimental verification. Journal of Micromechanics and Microengineering. Volume 18.
[16] Saad, R.; Romdhane, W.; Mihoubi,W.; Hsouna, A.; Brini, F. (2020): A Lobularia maritima LmSAP protein modulates gibberellic acid homeostasis via its A20 domain under abiotic stress conditions.
[17] Samy, M.; Badawy, A.; Ahmed, I.; Abdel Latef, A. (2020): Ameliorative impact of an extract of the halophyte Arthrocnemum macrostachyum on growth and biochemical parameters of soybean under salinity stress. Journal of Plant Growth Regulation. DOI: 10.1007/s00344-020-10185-2.
[18] Hogland, D. R.; Arnon, I. I. (1950): The water culture method for growing plants without soil. Journal Circular. California Agricultural Experiment Station. 2nd Edition. Volume 347; Pages 32.
[19] Bashir, Abubakar.; Abdulkadir; Wilson, Danbature.; Fai, Y. Yirankinyuki.; Buhari, Magaji.; Muhammad, M. Muzakkir (2014): In Situ Transesterification of Rubber Seeds (Hevea brasiliensis). Greener Journal of Physical Sciences. Volume 4 (3); Pages 038-044.
[20] Metzner, H.; Rau, H.; Senge, H. (1965): Untesuchungen zur synchronisierbarteit einzeluer pigmentan angel mutanten van chlorella. Planta. Volume 65; Pages 186-90.
[21] Leslie, E.; Geoffrey, J.; James, M. (1991): Statistical analysis. In: Interpretation and uses of medical statistics (4th ed). Oxford Scientific Publications (pub). Pages 411-6.
[22] Kotz and Etal (2006): Encyclopedia of Statistical Sciences V01,2e. Second Edition. Volume 16; Pages 707.
[23] Kirkpatrick, L. A. and Feeney, B. C. (2013): A simple guide to IBM SPSS statistics for version 20.0 student ed. Belmont, Calif., Wadsworth, Cengage Learning, x. Page 115.
[24] Almansouri, M.; Kinet, J. M.:Lutts, S. (2001): Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil. Volume 231; pages243-254.
[25] Murillo-Amador, B.; López-Aguilar, R..; Kaya, C.; Larrinaga-Mayoral, J.; Flores-Hernández, A. (2002): Comparative Effects of NaCl and Polyethylene Glycol on Germination, Emergence and Seedling Growth of Cowpea. Journal of Agronomy and crop science. Volume 188 (4); Pages 235-247.
[26] Kaya, C.; Tuna, A.; Yokaş, I. (2009): The role of plant hormones in plants under salinity stress. Salinity and water stress. Pages 45-50.
[27] Khajeh-Hosseini, M.; Powell, A. A.; Bingham, I. J.(2003): The interaction between salinity stress and seed vigour during germination of soyabean seeds. International Seed Testing Association. Volume 31 (11); Pages 715-725.
[28] Zhang, C.; Luo, W.; Li, Y.; Zhang, X.; Bai, X.; Niu, Z.; Zhang, X.; Li, Z.; Wan, D.; (2019): Transcriptomic Analysis of Seed Germination Under Salt Stress in Two Desert Sister Species (Populus euphratica and P. pruinosa). Frontiers in Genetics.
[29] Tal, M. M.; Shannon, C. (1983): Salt tolerance in the wild relatives of the cultivated tomato: Response of Lycopersicon esculentum Mill. L. cheesrnanii, L. peruvian urnand Solanurn pennellii and F, hybrid to salinity. Australian Journal of Plant Physiology. Volume 10; Pages 109-117.
[30] Basra, S. A. M.; Lovatt, C. J. (2016): Exogenous Applications of Moringa Leaf Extract and Cytokinins Improve Plant Growth, Yield, and Fruit Quality of Cherry Tomato. HortTechnology. Volume 26 (3). Pages327-337.
[31] Munns, R. (2002): Comparative physiology of salt and water stress. Plant, Cell and Environment. Volume 28; Pages 239- 250.
[32] Rady, M. M.; Bhavya Varma, C.; Howladar, S. M. (2013): Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract. Journal of Horticulture Science. Volume 162 (23); Pages 63-70.
[33] Rady, M. M.; Mohamed, G. F.(2015): modulation of salt stress effects on the growth, physio-chemical attributes and yields of phaseolus vulgaris l. Plants by the combined application of salicylic acid and moringa oleifera leaf extract. Scientia horticulturae. Volume 193; pages 105-113.
[34] Howladar, M. S. (2014): A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicology and Environmental Safety. Volume 100; Pages 69-75.
[35] Semida, W. M.; Rady, M. M. (2014): Pre-soaking in 24-epibrassinolide or salicylic acid improves seed germination, seedling growth, and anti-oxidant capacity in Phaseolus vulgaris L. grown under NaCl stress. Journal of Horticultural Science & Biotechnology. Volume 89 (3); Pages 338-344.
[36] Fuglie, L. J. (2000): New Uses of Moringa Studied in Nicaragua. ECHO Development Pages 68.
[37] Thomas, H.; Howarth, C. J. (2000): "Five ways to stay green". Journal of Experimental Botany. Volume 51; Pages 329-337.
[38] Bolarin, M. C.; Perez-Alfocea, F.; Cano, E. A.; Estan, M. T.; Carol, M. (1993): Growth, fruit yield and ion concentration in tomato genotypes after pre- and post-emergence salt treatments. American Society for Horticultural Science. Volume 118; Pages 655- 660.
[39] Yasmeen, A.; Basra, S. M. A.; Farooq, M.; Rehman, H.; Hussain, N.; Athar, H. R. (2013): Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regulation. Volume 69 (3); pages 225-233.
[40] Ali, A.; Abbas, M. N.; Maqbool, M. M.; Arshad, M.; Jan, M.; Qayyum, A.; Lee, D. J. (2017): Optimizing the Doses of Moringa (Moringa oleifera) Leaf Extract for Salt Tolerance in Maize. Philippine Journal of Crop Science (PJCS.). Volume 42 (1); Pages 1-12.
[41] Roy, C.; Mishra. S (2014): Impact of NaCl stress on the physiology of four cultivars of S. lycopersicum. Annual Review of Plant Biology. Volume 4 (2); Pages 09-20.
[42] Males, J.; Griffiths, H. (2017): Stomatal Biology of CAM Plants. Plant Physiology. Volume 174; Pages550-560.
[43] Turan, M. A.; Turkmer, N.; Taban, N. (2007): Effect of NaCl on stomatal resistance and proline chlorophyll, NaCl and K concentrations of lentil plants. Journal of Agronomy. Volume 6; Pages 378-381.
[44] Taffouo, V. D.; Wamba, O. F.; Yombi, E.; Nono, G. V.; Akoa, A. (2010): Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranean (L.) verdc.) landraces grown under saline conditions. International Journal of Botany. Volume 6; Pages 53-58.
[45] Smirnoff, N.; Pallanca, J. E. (1996): Ascorbate metabolism in relation to oxidative stress. Volume 24 (2); Pages 472-478.
[46] Santos, C. V. (2004): Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae. Volume 103; Pages 93-99.
[47] Elsheery, N.; Cao, K. F. (2008): Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiologiae Plantarum. Volume 30; pages769-777.
[48] Verma, S.; Mishra. S. N. (2005): Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology. Volume 162: Pages 669-677.
[49] Demmig, A. B.; Adams, W. (2002): Antioxidants in Photosynthesis and Human Nutrition. Science. Volume 298; Pages 2149-2153.
[50] Dos Santos, R. C. (1998): EMBRAPA releases BRS 151 Amendoim L 7, a large-seeded groundnut cultivar for the Northeast region in Brazil. International Arachis Newsletter. Volume 18; Pages 11-12.
[51] Mittler, R. (2002): Oxidative stress, antioxidants and stress tolerance. Trends Plant Science. Volume7 (9); Pages 405-410.
[52] Hamada, A. M. (1998): Effect of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants. Proceedings of the 11th International Photosynthesis Conference, Budapest, Hungary. Pages 2581-2584.
[53] Choudhury, N. K.; Choe, H. T.; Huffaker, R. C. (1993): Ascorbate induced zeaxanthin formation in wheat leaves and photoprotection of pigment and photochemical activities during aging of chloroplasts in light. journal of plant physiology. Volume 141; Pages 551-556.
[54] Woźniak, S.; Pantazi, A.; Bohnstingl, T.; Eleftheriou, E. (2020): Deep learning incorporating biologically inspired neural dynamics and in-memory computing. Nature Machine Intelligence. Volume 2; pages325-336.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.