Journal of Earth and Atmospheric Sciences
Articles Information
Journal of Earth and Atmospheric Sciences, Vol.2, No.3, May 2017, Pub. Date: Sep. 18, 2017
Mechanistic Approach for Modelling Soils and Aquifers Salinization Risks – A Literature Review in Semi-arid Regions
Pages: 24-29 Views: 98 Downloads: 41
Authors
[01] Sabri Kanzari, National Institute of Research of Rural Engineering, Waters and Forests of Tunis, INRGREF, Laboratory of Rural Engineering, University of Carthage, Ariana, Tunisia.
[02] Béchir Ben Nouna, National Institute of Research of Rural Engineering, Waters and Forests of Tunis, INRGREF, Laboratory of Rural Engineering, University of Carthage, Ariana, Tunisia.
[03] Mourad Rezig, National Institute of Research of Rural Engineering, Waters and Forests of Tunis, INRGREF, Laboratory of Rural Engineering, University of Carthage, Ariana, Tunisia.
Abstract
Semi-arid regions face problems of soils and aquifers salinization. The studying approaches of salinization risks are based on the modeling of water movement and salt transfer. The closest approach to reality is the deterministic-mechanistic approach. In this paper, cases of salinization of soils and aquifers are presented to show the magnitude of the phenomenon on a global scale. Then, the mechanistic deterministic approach is detailed by the development of mathematical equations and by the presentation of its advantages and limitations.
Keywords
Soil, Aquifer, Salinization, Modelling, Literature Review
References
[01] UNESCO, 1970. Recherche et Formation en matières d’irrigation avec les eaux salées: 1962-1969. Rapport Technique. Projet PNUD / UNESCO. 243 pp.
[02] Servant J., 1975. Contribution à l’étude pédologique des terrains halomorphes. L’exemple des sols du Sud et du Sud-Ouest de la France. Thèse Doctorat. En Sciences Naturelles, ENSA Montpellier, 194 pp.
[03] Malik M., Mustafa M. A. et Letey J., 1991. Effect of mixed Na/Ca solutions on swelling, dispersion and transient water flow in unsaturated montmorillonitic soils. Geoderma 52, 17-28.
[04] Helalia A. M., El-Amir S., Wahdan A. A. et Shawky M. E., 1991. Effect of low salinity on salt displacement in two soils. Agricultural Water Management 19, 43-50.
[05] Summer M. E., 1993. Distribution, properties and management of sodic soil. In Australian Journal of Soil Research. Vol 31. N°6, 681-751.
[06] Abu-Sharar T. M. et Salameh A. S., 1995. Reduction in hydraulic conductivity and infiltration rate in relation to aggregate stability and irrigation water turbidity. Agricultural Water Management 29, 53-62.
[07] Saidi D., Le Beissonnais Y., Duval O., Daoud Y. et Halitim A., 2004. Effet du sodium échangeable et de la concentration saline sur les propriétés physiques des sols de la plaine du Chellif (Algérie). Etude et Gestion des Sols 11, 81-92.
[08] García-Orenes F., Guerrero C., Maitaix-Solera J., Pedreno-Navarro J., Gómez I., et Mataix-Beneyto J., 2005. Factors controlling the aggregate stability and bulk density in two different degradded soils amended with biosolids. Soil & Tillage Research (82), 65-76.
[09] Choudhary O. P., Ghuman B. S., Jason A. S. et Bajwa M. S., 2006. Effect of alternating irrigation with saodic and non-sodic waters on soil propreties and sunflower yield. Agricultural Water Management 85, 151-156.
[10] Bagarello V., Iovino M., Palazzolo E., Panno M. et Reynolds W. D., 2006. Field and laboratory approaches for determing sodicity effects on saturated soil hydraulic conductivity. Geoderma (130), 1-13.
[11] Bhardwaj A. K., Goldstein D., Azenkot A. et Levy G. J., 2007. Irrigation with treated wastewater under two different irrigation methods: Effect on hydraulic conductivity of a clay soil. Geoderma 140, 199-206.
[12] Nisha R., Kaushik A. et Kaushik C. P., 2007. Effect of indigenous cyanobacteria application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138, 49-56.
[13] Tejada M., Moreno J. L., Hernandez M. T. et Garcia C., 2007. Application of two beet vinasse forms in soil restoration: Effects on soil proprieties in an arid environment in southern Spain. Agriculture, Ecosystems and Environment 119, 289-298.
[14] Mhiri A ., Tarhouni J ., Hachicha M et Lebdi F., 1998. Approche systématique des risques de salinisation par endoréisation anthropique. Revue Etude et gestion des sols. Vol 5, n4: 257-268 p.
[15] Beltrán J. M., 1999. Irrigation with saline water: benefits and environmental impact. Agricultural Water Management 44, 183-194 p.
[16] Khan S., Tariq R., Yuanlai C. et Blackwell J., 2006. Can irrigation be sustainable? Agricultural Water Management 80, 87-99 p.
[17] Pavelic P., Dillon PJ., Narayan K. A., Herrmann T. N. and Barnett SR., 1997. Integrated groundwater flow and agronomic modelling for management of dryland salinity of a coastal plain in southern Australia. Agricultural Water Management 35, 75-93.
[18] Jayatilaka C. J., Storm B. and Mudgway L. B., 1998. Simulation of water flow on irrigation scale with MIKE-SHE. Journal of Hydrology 208, 108-130.
[19] Al-Senafy M. et Abraham J., 2004. Vulnerability of groundwater resources from agricultural activities in southern Kuwait. Agricultural Water Management 64, 1-15.
[20] Milnes E., et Perrochet P., 2005. Direct simulation of solute recycling in irrigated areas. Advances in water resoureces 29, 1140-1154.
[21] Oulaaross Z., Younsi A., Mehdi K., Veron A. et Boutayeb K., 2005. Salinisation des nappes d’eaux souterraines par le boseau d’eau salée d’une zone côtière, surexploitée et semi-aride (Sidi Moussa-Oualidia, Maroc). 3éme journées internationales des géosciences de l’environnement. El Jadida. Faculté des sciences El Jadia.
[22] Causapé J., Quilez D. and Aragues R., 2006. Groundwater quality in CR-V irrigation district (Bardenas I, Spain): Alternative scenarios to reduce off-site salt and nitrate contamination. Agricultural Water Management 84, 281-289.
[23] Petalas C. and Lambrakis N., 2006. Simulation of intense salinisation phénomena in coastal aquifers – the case of the coastal aquifers of Thrace. Journal of Hydrology 324, 51-64.
[24] Macauly S. E. and Mullen I., 2007. Predicting salinity impacts of land use change: Groudwater modelling with airborne electromagnetics and field data, SE Queensland, Australia. International Journal of Applied Earth Observation and Geoinformation 9, 124-129.
[25] Gallali T., 1980. Transferts sels-matière organique en zones arides méditerranéennes. Thèse de Docteur-Ingénieur, Université de Nancy I, 202 p.
[26] Baccar L., Moussa M., Ben Hamza C., 2001. L’hydraulique des zones humides de Maarmoura Tazarka et Korba. Rapport de diagnostic des sites, Agence de Protection et d’Aménagement du littoral, 106 pp.
[27] Fedrigoni L., Krimissa M., Zouari K., Maliki . et Zuppi G. M., 2001. Origine de minéralisation et comportement hydrogéochimique d’une nappe phréatique soumise à des contraintes naturelles et anthropiques sévères: Exemple de la nappe de Djebeniana (Tunisie). Surface Geosciences 332, 665-671.
[28] Trabelsi R., Zaïri M., Smida H. et Ben Dhia H., 2005. Salinisation des nappes côtières: cas de la nappe nord du Sahel de Sfax, Tunisie. Geoscience 33, 515-524.
[29] Kanzari S., Hachicha M., Bouhlila R. and Battle-Sales J., 2012. Characterization and modeling of water movement and salts transfer in a semi-arid region of Tunisia (Bou Hajla. Kairouan)- Salinization risk of soils and aquifers. Computers and Electronics in Agriculture, 86: 34-42.
[30] Harter T. and Hopmans J. W., 2004. Role of vadose-zone flow processes in regional-scale hydrology: review, opportunities and challenges. Unsaturated Zone modelling: Progress, Challenges and Applications, Frontis Ser., vol 6., edited by Feddes R. A., Fooji G. H. et van Dam J. C., 145-178. Springer, New York.
[31] Pachepsky Y. A., Smettem K. R. J., Vanderborght J., Herbst M., Vereecken H., and Wösten J. H. M., 2004. Reality and fiction of models and data in soil hydrology. Unsaturated Zone modelling: Progress, Challenges and Applications, Frontis Ser., vol 6., edited by Feddes R. A., Fooji G. H. et van Dam J. C., 145-178. Springer, New York.
[32] Bastiaanssen W. G. M., Allen R. G., Droogers P., D’Urso G. et Steduto P., 2004. Inserting man’s irrigation and drainage wisdom into soil water flow models and bringing it back out: how far have we progressed? Unsaturated Zone modelling: Progress, Challenges and Applications, Frontis Ser., vol 6., edited by Feddes R. A., Fooji G. H. et van Dam J. C., 263-299. Springer, New York.
[33] Bastiaanssen W. G. M., Allen R. G., D’Urso G. and Steduto P., 2007. Twenty-five years modelling irrigated and drained soils: State of the art. Agricultural Water Management (92), 111-125.
[34] Cherbuy B., 1991. Les sols salés et leur réhabilition: Etude bibliographique. Cemagref, 150 pp.
[35] Vauclin M., 1994. Modélisation du transport de solutés dans la zone non saturée du sol. Revue des sciences de l'eau, 7: 81-102.
[36] Groenendijk P. and van den Eertwegh G. A. P. H., 2004. Drainage-water travel times as a key factor for surface water contamination. Unsaturated Zone modelling: Progress, Challenges and Applications, Frontis Ser., vol 6., edited by Feddes R. A., Fooji G. H. et van Dam J. C., 145-178. Springer, New York.
[37] Nielsen D. R. and Biggar J. W., 1962. Introduction to flow imiscible liquids in porous media – Flow through porous media, Academic Press.
[38] Wesseling, J. G., Ritsema C. J., Stotle J., Oostindie K. et Dekker L. W., 2008. Describing the soil physical characteristics of soil samples with cubical splines. Transport in Porous Media, 71: 289-309.
[39] Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated. Water Resourources Research, 12: 513-522.
[40] Lu Z. et Zhang D., 2002. Stochastic Analysis of Transient Flox in Heteregeneous Varaibly Sturated Porous Media: The van Genuchten-Mualem Consitutive Model. Vadose Zone Journal, 1: 137-149.
[41] Rocha D., F. Abbasi and J. Feyen., 2006, cité par Wesseling (2009). Sensitivity analysis of soil hydraulic properties on subsurface water flow in furrows. Journal of Irrigation and Drainage Engineering, 132 (4): 418-424.
[42] van Genuchten MT., Leji FT., Yates SR., 1991. The RETC Code for quantifying the hydraulic functions of unsaturated soils. U. SDepartment of Agriculture, Agricultural Research Service Riverside, 117 pp.
[43] Hollenbeck K. J, Simunek J. and van Genuchten M. Th., 2000. RETMCL: Incorporating maximum-likelihood estimation principles in the RETC soil hydraulic parameter estimation code. Computers & Geosciences 26, 319-327.
[44] Wessolek G., Plagge R., Leij F. J. and van Genuchten M. Th., Analysing problems in describing field and laboratory measured soil hydraulic properties. Geoderma 64, 93-110.
[45] van Dam J. C., de Rooij G. H., Heinein M. and Stagnitti F., 2004. Concepts and dimensionality in modeling unsaturated water flow and solute transport. Unsaturated Zone modelling: Progress, Challenges and Applications, Frontis Ser., vol 6., edited by Feddes R. A., Fooji G. H. et van Dam J. C., 1-36. Springer, New York.
[46] Kanzari S., Hachicha M. and Bouhlila R., 2014. Simple Evaporation Method for Estimating Soil Water Retention Properties of an Unsaturated Zone in Bouhajla (Kairouan - Central Tunisia). The Experiment Journal, 26(4): 1834-1843.
[47] D'Urso G., 2001. Simulation and management of on-demand irrigation systems: a combined agro-hydrological approach. PhD Thesis Wageningen University.
[48] Kanzari S. and Ben Mariem S., 2014. One-dimensional numerical modeling for water flow and solute transport in an unsaturated soil. International Journal of Applied Science and Mathematics, 1(2): 52-56.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - 2017 American Institute of Science except certain content provided by third parties.