Journal of Nanoscience and Nanoengineering
Articles Information
Journal of Nanoscience and Nanoengineering, Vol.1, No.3, Oct. 2015, Pub. Date: Aug. 17, 2015
Empirical Ratio of First Two Optical Transition Energies in Semiconducting Single Wall Carbon Nanotubes
Pages: 107-114 Views: 1420 Downloads: 511
Authors
[01] G. R. Ahmed Jamal, Department of Electrical and Electronic Engineering, University of Asia Pacific, Dhaka, Bangladesh.
[02] S. M. Mominuzzaman, Department of Electrical and Electronic Engineering, Bangaldesh University of Engineering and Technology, Dhaka, Bangladesh.
Abstract
In this work, the ‘ratio problem’ between first and second optical transition energies of semiconducting single-wall carbon nanotube is discussed. Possible reasons behind the deviation of experimentally observed ratio between first two optical transitions from theoretically predicted ratio is mentioned. A number of semiconducting single-wall carbon nanotubes having chiral index (n, m) with mod (n-m, 3) ≠ 0, and having diameter in between diameter range of 0.4 nm and 3 nm are considered. First and second optical transition energies of all those tubes are recorded from various reports of optical spectroscopic experiments and recoded data was closely scrutinized. Based on that observation, ratio of first and second optical transition energies for all semiconducting tubes is expressed empirically through an empirical expression in terms of diameter, chiral index (n, m) and mod value. The empirical ratio matched very well with experimental ratio over the full diameter range. The proposed empirical way of expressing this ratio may greatly help in finding the proper ratio of first two optical transitions without depending on experimental values of two transitions. The generated pattern from the plot of this empirical ratio can also help in Photoluminescence based chirality assignment.
Keywords
Single Wall Carbon Nanotube, Optical Transition, Tight Binding Model, Ratio Problem, Chiral Index
References
[01] V. N. Popov, “Carbon nanotubes: properties and application”, Materials Science and Engineering R, 43, pp. 61–102, 2004.
[02] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, “Structure and Electronic Properties of Carbon Nanotubes”, J. Phys. Chem. B, 104, pp.2794-2809, 2000.
[03] N. Hamada, S. Sawada, and A. Oshiyama, “New one-dimensional conductors: graphitic microtubules,” Phys. Rev. Lett., Vol.68, No.10, pp.1579-1581, 1992.
[04] J. W. Mintmire and C. T. White, “Universal density of states for carbon nanotubes”, Phys. Rev. Lett., Vol. 81, No.12, 1998.
[05] S. Reich and C. Thomsen, “Chirality dependence of the density-of-states singularities in carbon nanotubes”, Phys. Rev. B, Vol 62, No. 7, 2000.
[06] M.S. Dresselhausa, G. Dresselhausc, A. Jorio, A.G. Souza Filho, R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes”, Carbon, 40, pp.2043–2061, 2002.
[07] J. D. Correa, A. J. R. da Silva, and M. Pacheco, “Tight-binding model for carbon nanotubes from ab initio calculations,” J. Phys.: Condens. Matter, Vol.22, No.7, 275503, 2010.
[08] R. Kundu, “Tight binding parameters for graphene”, Modern Physics Letters B, Vol. 25, No. 3, pp.163-173, 2011.
[09] S. Reich, J. Maultzsch, and C. Thomsen, “Tight-binding description of graphene,” Phys. Rev. B, Vol.66, No.3, pp.035412, 2002.
[10] Y. Lian, Y. Maeda, T. Wakahara, T. Akasaka, S. Kazaoui, N. Minami, N. Choi and H. Tokumoto, “Assignment of the Fine Structure in the Optical Absorption Spectra of Soluble Single-Walled Carbon Nanotubes”, J. Phys. Chem. B, 107, 12082-12087, 2003.
[11] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synthetic Met., Vol.103, pp.2555, 1999.
[12] R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical kataura plot,” Nano Lett., Vol.3, No.9, pp.1235-1238, 2003.
[13] M. Y Sfeir., T. Beetz, F Wang, L. Huang, X. M. H Huang., M. Huang, J. Hone, S. O’Brien, J. A Misewich, T. F. Heinz, L. Wu, Y. Zhu, L. E. Brus, “Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes of Defined Chiral Structure”, Science, Vol. 312, April 2006.
[14] Bachilo S. M., Strano M. S., Kittrell C., Hauge R. H., Smalley R. E., Weisman R. B., “Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes”, Science, Vol 298 No. 5602, pp.2361, 2002.
[15] V. Zólyomi and J. Kürti, “First-principles calculations for the electronic band structures of small diameter single-wall carbon nanotubes”, Phys. Rev. B 70, 085403, 2004.
[16] V. N. Popov, “Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model”, New Journal of Physics, Vol. 6, 2004.
[17] H. Zeng, H. F. Hu, J. W. Wei, Z. Y. Wang, L. Wang, and P. Peng, “Curvature effects on electronic properties of small radius nanotube,” Appl. Phys. Lett., Vol.91, No.3, pp.033102, 2007.
[18] O. Gulseren, T. Yildirim and S. Ciraci, “A systematic ab-initio study of curvature effects in carbon nanotubes”, Phys. Rev. B 65, 153405, 2002.
[19] J W Ding, X H Yan, J X Cao, “Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes”, Phys. Rev. B , Vol. 66, Issue 7, Pages: 2-5, 2002.
[20] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Trigonal warping effect of carbon nanotubes,” Phys. Rev. B, Vol.61, No.4, pp.2981-2990, 2000.
[21] Kane C. L. and Mele E. J., “The Ratio Problem in Single Carbon Nanotube Fluorescence Spectroscopy”, Phys. Rev. Lett. 90, 207401, 2003.
[22] E. J. Mele, C.L. Kane, “Many body effects in carbon nanotube fluorescence spectroscopy”, Solid State Communications 135, pp. 527–531, 2005.
[23] H. Lin, J. Lagoute, V. Repain, C. Chacon, Y. Girard, J.-S. Lauret, F. Ducastelle, A. Loiseau S. Rousset , “Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy”, Nature Materials 9, 235–238, 2010.
[24] C. D. Spataru, S. I. Beigi, L. X. Benedict and S. G. Louie, “Excitonic Effects and Optical Spectra of Single-Walled Carbon Nanotubes”, AIP Conf. Proc., vol 772, p. 1061-1062, 2004.
[25] H. Zhao, S. Mazumdar, “Excitons in semiconducting single-walled carbon nanotubes”, Synthetic Metals, 155, p.250–253, 2005.
[26] G. Dukovic, F. Wang, D. Song, M. Y. Sfeir, T. F. Heinz, and L. E. Brus, “Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes,” Nano Lett., Vol.5, No.11, pp.2314-2318, 2005.
[27] M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, and R.E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes”, Science 297, pp.5581-5593, 2002.
[28] J. Jiang, R. Saito, Ge. G. Samsonidze, A. Jorio, S. G. Chou, G. Dresselhaus and M. S. Dresselhaus, “Chirality dependence of exciton effects in single-wall carbon nanotubes: Tight-binding model”, Phys. Rev. B 75, 035407, 2007.
[29] K. Sato a R. Saito, J. Jiang, G. Dresselhaus, M.S. Dresselhaus, “Chirality dependence of many body effects of single wall carbon nanotubes”, Vibrational Spectroscopy: Elsevier, Vol. 45, Issue 2, pp.89–94, 2007.
[30] T. Ando, “Family Effects on Excitons in Semiconducting Carbon Nanotubes” Journal of the Physical Society of Japan, Vol. 78, No. 10, 104703, 2009.
[31] T. G. Pedersen, “Exciton effects in carbon nanotubes”, Carbon 42, pp.1007–1010, 2004.
[32] C. D. Spataru, S. I. Beigi, R. B. Capaz, and S. G. Louie, “Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes”, Phys. Rev. Lett., vol. 95, Issue 24, 247402, 2005.
[33] Ge. G. Samsonidze, R. Saito, N. Kobayashi, A. Grüneis, J. Jiang, A. Jorio, S. G. Chou, G. Dresselhaus and M. S. Dresselhaus, “Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters, Appl. Phys. Lett., Vol 85, No. 23, 2004.
[34] H. Telg, “Raman studies on individual nanotubes and nanotube ensembles –vibrational properties and scattering efficiencies”, Ph. d thesis, Physics, Institute für Festkörperphysik, Berlin, 2009.
[35] Y. Lim , K. Yee , J. Kim , E. H. Hároz , J. Shaver , J. Kono , S. K. Doorn , R. H. Hauge , R. E. Smalley, “Chirality Assignment of Micelle-Suspended Single-Walled Carbon Nanotubes Using Coherent Phonon Oscillations”, Journal of the Korean Physical Society, Vol. 51, No. 1, pp. 306-311, 2007.
[36] C. Thomsen, H. Telg, J. Maultzsch and S. Reich, “Chirality assignments in carbon nanotubes based on resonant Raman scattering”, phys. stat. sol. (b) 242, No. 9, pp.1802–1806, 2005.
[37] M. S. Strano, S. K. Doorn, E. H. Haroz, C. Kittrell, R. H. Hauge and R. E. Smalley, “Assignment of (n, m) Raman and Optical Features of Metallic Single-Walled Carbon Nanotubes”, Nano Lett., Vol.3, No.8, pp.1091-1096, 2003.
[38] J. Lefebvre, S. Maruyama and P. Finnie, “Photoluminescence: science and applications”, Topics in Applied Physics, Vol. 111, pp.287-319, 2008.
[39] R. B. Weisman, “Fluorimetric characterization of single-walled carbon nanotubes”, Anal. Bioanal. Chem. 396, 1015–1023, 2010.
[40] M. J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, and R.E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes”, Science 297, pp.5581-5593, 2002.
[41] D. A. Tsyboulski1, J. D. R. Rocha, S. M. Bachilo1, L. Cognet and R. B. Weisman, Structure-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes”, Nano Lett., 7(10), pp.3080-5, 2007.
[42] M. Jones, C. Engtrakul, W. K. Metzger, R. J. Ellingson, A. J. Nozik, M. J. Heben, and G. Rumbles, “Analysis of photoluminescence from solubilized single-walled carbon nanotubes”, Phys. Rev B, 71, 115426, 2005.
[43] Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama, “Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol”, Chem. Phys. Lett., Vol. 387, Issues 1–3, pp.198–203, 2004.
[44] J. Maultzsch, H. Telg, S. Reich, and C. Thomsen, “Radial breathing mode of single-walled carbon nanotubes Optical transition energies and chiral-index assignment”, Phys. Rev. B 72, 205438, 2005.
[45] C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects”, Phys. Rev. B, Vol. 93, No. 14, 2004.
[46] A. Hagen and T. Hertel, “Quantitative Analysis of Optical Spectra from Individual Single-Wall Carbon Nanotubes”, Nano letters, Vol. 3, No. 3, pp. 383-388, 2003.
[47] Z. Wang, H. Zhao, and S. Mazumdar, “Quantitative calculations of the excitonic energy spectra of semiconducting single-walled carbon nanotubes within a π-electron model”, Phys. Rev. B 74, 195406, 2006.
[48] C. Thomsen, H. Telg, J. Maultzsch and S. Reich, “Chirality assignments in carbon nanotubes based on resonant Raman scattering”, phys. stat. sol. (b) 242, No. 9, pp.1802–1806, 2005.
[49] M. S. Strano, S. K. Doorn, E. H. Haroz, C. Kittrell, R. H. Hauge and R. E. Smalley, “Assignment of (n, m) Raman and Optical Features of Metallic Single-Walled Carbon Nanotubes”, Nano Lett., Vol.3, No.8, pp.1091-1096, 2003.
[50] J. E. Herrera, L. Balzano, F. Pompeo and D. E. Resasco, “Raman characterizatiuon of Single wall nanotubes of various diameters obtained by catalytic disproportionation of CO”, J. Nanosci. Nanotech. Vol. 3, No. 1, 2003.
[51] S. K. doorn, D.A. Heller, P.W. Barone, M.L. Usrey, M.S. Strano, “Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution”, Appl. Phys. A 78, pp.1147–1155, 2004.
[52] Z. Yu and L. E. Brus, “(n, m) Structural Assignments and Chirality Dependence in Single-Wall Carbon Nanotube Raman Scattering”, J. Phys. Chem. B, 105, pp.6831-6837, 2001.
[53] H. Telg, J. Maultzsch, S. Reich, F. Hennrich and C. Thomsen, “Chirality Distribution and Transition Energies of Carbon Nanotubes” Phys. Rev. Lett., Vol. 93, No. 17, 2004.
[54] A. Jorio, A. P. Santos, H. B. Ribeiro, C. Fantini, M. Souza, J. P. M. Vieira, C. A. Furtado, J. Jiang, R. Saito, L. Balzano, D. E. Resasco and M. A. Pimenta, “Quantifying carbon-nanotube species with resonance Raman scattering” Phys. Rev. B 72, 075207, 2005.
[55] H. Telg, J. Maultzsch, S. Reich, F. Hennrich and C. Thomsen, “Raman excitation profiles for the (n1, n2) assignment in carbon nanotubes” AIP Conf. Proceedings, Vol. 723, Issue 1, p.330, 2004.
[56] C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects”, Phys. Rev. B, Vol. 93, No. 14, 2004.
[57] H. Telg, J. Maultzsch, S. Reich and C. Thomsen, “Resonant-Raman intensities and transition energies of the E11 transition in carbon nanotubes”, Phys. Rev. B 74, 115415, 2006.
[58] M. Namkung, P. A.Williams, C. D. Mayweather, B. Wincheski, C. Park; Namkung, S. Juock, “Chirality Characterization of Dispersed Single Wall Carbon Nanotubes” NASA, 2005 MRS Spring Meeting; San Francisco, CA; United States, 28 Mar. - 1 Apr. 2005.
[59] S. Berciaud, L. Cognet, P. Poulin, R. Bruce Weisman, and B. Lounisa, “Absorption spectroscopy of individual single-walled carbon nanotubes”, Nano Lett., 7 (5), pp.1203–1207, 2007.
[60] R. B. Weisman, “Fluorimetric characterization of single-walled carbon nanotubes”, Anal. Bioanal. Chem. 396, 1015–1023, 2010.
[61] D. A. Tsyboulski1, J. D. R. Rocha, S. M. Bachilo1, L. Cognet and R. B. Weisman, Structure-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes”, Nano Lett., 7(10), pp.3080-5, 2007.
[62] M. Jones, C. Engtrakul, W. K. Metzger, R. J. Ellingson, A. J. Nozik, M. J. Heben, and G. Rumbles, “Analysis of photoluminescence from solubilized single-walled carbon nanotubes”, Phys. Rev B, 71, 115426, 2005.
[63] Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama, “Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol”, Chem. Phys. Lett., Vol. 387, Issues 1–3, pp.198–203, 2004.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - 2017 American Institute of Science except certain content provided by third parties.