Journal of Nanoscience and Nanoengineering
Articles Information
Journal of Nanoscience and Nanoengineering, Vol.2, No.2, Apr. 2016, Pub. Date: Feb. 29, 2016
On the New Phenomenon of Fluorescence Self-Quenching in Organic Monolayers at the Air-Liquid Interface and on Solid Supports
Pages: 15-19 Views: 1262 Downloads: 793
[01] George R. Ivanov, Laboratory of Nanoscience and Nanotechnology, Department of Physics, University of Architecture, Civil Engineering and Geodesy and Advanced Technologies Ltd., Sofia, Bulgaria.
The novel phenomenon of fluorescence self-quenching was earlier discovered by us. It was observed in monolayers from fluorescently head labeled phospholipids, mainly Nitrobenzoxadiazole Dipalmitoyl Phosphatidyl Ethanolamine (DP-NBD-PE), at the air-liquid interface. Here we report that the morphology and film structure is preserved during Langmuir-Blodgett (LB) film transfer on the solid support as observed with fluorescence microscopy. The self-quenching phenomenon in the solid phase is interpreted as radiationless energy transfer when NBD chromophores are below the critical distance Rc of 0,94 nm in the solid phase. Possible applications for high sensitivity and selectivity biosensors are discussed.
Fluorescence Self-Quenching, Langmuir Films, Langmuir-Blodgett Films, Phospholipids, Biosensors, Fluorescence Microscopy
[01] Monti, J. A., S. T. Christian, and WA. Shaw, (1978). J. Lipid Research, Vol. 19 p. 222
[02] Thompson, N. X., H. M. McConnell and T. P. Burghardt, (1984). Biophys. J., Vol. 46, p. 739
[03] Suzuki, H. and H. Hiratsuka, (1988). In: Nonlinear Optical Properties of Organic Materials, SPIE Vol. 971, p. 97
[04] Ivanov, G. R. (1992). First observation of fluorescence self-quenching in Langmuir films. Chem. Phys. Lett., Vol. 193, p. 323
[05] Ivanov, G. R., G. Georgiev and Z. Lalchev - Book chapter "Fluorescently Labelled Phospholipids - New Class of Materials for Chemical Sensors for Environmental Monitoring", in "Relevant Perspectives in Global Environmental Change", Julius Ibukun Agboola (Ed.), (2011) ISBN: 978-953-307-709-3, InTech, Rijeka
[06] Morris, S. J., D. Bradley, and R. Blumenthal. (1985). Biochim. Biophis. Acta, Vol. 818, p. 365
[07] Rajarathnam, K., J. Hochman, M. Schindler, and S. Ferguson-Miller. (1989). Biochemistry, Vol. 28, p. 3168
[08] Chattopadhyay, A. and E. London. (1987). Biochemistry, Vol. 26, p. 39
[09] Arvinte, T., A. Cudd, and K. Hildenbrand. (1986). Biochim. Biophys. Acta, Vol. 860, p. 215
[10] Lin, S. and W.S. Struve. (1991). Photochem. Photobiol., Vol. 54, p. 361
[11] Brennan, J. D. and UJ. Krull. (1992). Chemtech, Vol. 22, p. 227
[12] Brennan, J. D., R. S. Brown, A. Delia Manna, K. M. R. Kallury, P. A. Piunno, and U. J. Krull. (1993). Sens. Act. B, Vol. 11, p. 109
[13] Brennan, J.D., K.K. Flora, G.N. Bendiak, G.A. Baker, M.A. Kane, S. Pandey and F.V. Bright. (2000). Phys. Chem. B, Vol. 104, p. 10100
[14] Brown, R. S., J. D. Brennan, and U. J. Krull. (1994). J. Chem. Phys., Vol. 100, p. 6019
[15] Shrive, J. D. A., J. A. Brennan, R. S. Brown, and U. J. Krull. (1995). Appl. Spectroscopy, Vol. 49, p. 304
[16] Nikolelis, D. P, J. D. Brennan, R. S. Brown, and U. J. Krull. (1992). Anal. Chim. Acta., Vol. 257, p. 49
[17] Brennan, J. D., K. M. R. Kallury, and U. J. Krull. (1994). Thin Solid Films, Vol. 244, p. 898
[18] Lakshmi C., R. G. Hanshaw, B. D. Smith. (2004) Tetrahedron 60 (49) pp 11307-11315
[19] Chen Y-H, J-C. Tsai, T-H. Cheng, S-S. Yuan, Y-M. Wang. (2014), Biosensors and Bioelectronics, 56, pp 117-123
[20] Sharma P. S., F. D’Souza and W. Kutner. (2012), Trends in Analytical Chemistry 34, pp 59-77
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - 2017 American Institute of Science except certain content provided by third parties.