Journal of Nanoscience and Nanoengineering
Articles Information
Journal of Nanoscience and Nanoengineering, Vol.4, No.1, Mar. 2018, Pub. Date: May 28, 2018
Investigation on Purification Potential of Multiwalled Carbon Nanotubes Using Organic-Mineral Acid Mixture
Pages: 1-8 Views: 1579 Downloads: 802
Authors
[01] Oluwasina Oludayo Olugbenga, Department of Chemistry, Federal University of Technology, Akure, Ondo State, Nigeria; Department of Chemical, University of the Witwatersrand, Johannesburg, South Africa.
[02] Daramola Olawale Michael, Department of Chemical, University of the Witwatersrand, Johannesburg, South Africa.
[03] Iyuke Sunny, Department of Chemical, University of the Witwatersrand, Johannesburg, South Africa.
Abstract
Weight loss and surface defects are side effects of Carbon nanotubes (CNTs) purification and functionalization with mineral acids. The potential of using 3:1 concentrated acetic acid: hydrochloric acid was investigated in order to purify and functionalize CNTs. Multi-walled carbon nanotubes were analyzed by TEM, TGA, Raman, FTIR, and XRD. The XRD patterns indicated the preservation of the crystalline nature of MWCNTs after the purification and functionalization. There was improvement in the purity of the CNTs as shown in the TEM morphology of pCNTs and fCNTs. The Raman spectroscopy analysis showed that there was an increase in the (ID/IG) of functionalized MWCNTs to 0.85 from 0.84 of the pCNTs, indicating introduction of functional groups to the carbon surface. The TGA curve indicated that the aCNTs was most thermally stable than both the pCNTs and fCNTs. There was also an indication of increase in hydrophilicity of the fCNTs due to the functionalization. The functionalization of the CNTs was confirmed in the FTIR spectra of the material. The results obtained demonstrated the potential of using organic acid – inorganic acid mixture for the purification of CNTs for the preservation of structure and morphology of the CNTs with possible functionalization.
Keywords
Carbon Nanotubes, Purification, Functionalization, Characterization, Organic-Inorganic Acid
References
[01] Iijima S. Helical microtubules of graphitic carbon, Nature, 1991, V. 354, p. 56-58.
[02] Merkoci A. Pumera, M. Llopis, X. P´erez, B. Del Valle, M. Alegret, S. New materials for electrochemical sensing. VI. Carbon nanotubes TRAC Trends Anal Chem, 2005, V, 24, p. 826-838.
[03] Ajayan P. M. Nanotubes from carbon, Chem Rev, 1999, V. 99, p. 1787-1800.
[04] Balasubramanian K. Burghard, M. Chemically functionalized carbon nanotubes, Small, 2005, V. 2, p. 180-192.
[05] Ciraci S. Dag, S. Yildirim, T. Gu¨lseren, O. Senger, R. T. Functionalized carbon nanotubes and device applications, J. Phys. Condens. Matter, 2004, 16R, p. 901-906.
[06] Wang Q. H. Yan, M. Chang, R. P. H. A. Flat panel display prototype using gated carbon nanotube field emitters, Appl. Phys. Lett, 2001, V. 78, p. 1294-1296.
[07] Karousis N. Tsotsou, G. E. Evangelista, F. Rudolf, P. Ragoussis, N. Tagmatarchis, N. Carbon nanotubes decorated with palladium nanoparticles: Synthesis, characterization, and catalytic activity, J. Phys Chem C, 2008, V, 112 p. 13463-13469.
[08] Hu H. Zhao, B. Itkis, M. E. Haddon, R. C. Nitric acid purification of single- walled carbon nanotubes, J. Phys. Chem B., 2003, V. 107, p. 13838-42.
[09] Buang N. A. Fadil, F. Majid, Z. A. Shahir, S. Characteristic of mild acid functionalized multiwalled carbon nanotubes towards high dispersion with low structural defects, Digest Journal of Nanomaterials and Biostructures, 2012, V. 7, №1, p. 33-39.
[10] Rehman A, Abbas, S. M. Ammad, H. M. Badshah, A. Ali, Z. Anjum, D. H. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion, Materials Letters, 2013, V. 108, p. 253-256.
[11] Ziegler K. J. Gu, Z. Peng, H. Flor, E. L. Hauge, R. H. Smalley, R. E. Controlled oxidative cutting of single-walled carbon nanotubes, J. Am. Chem. Soc., 2005, V. 127, p. 1541-7.
[12] Chen J, Hamon, M. A. Hu, H. Chen, Y. Rao, A. M. Eklund, P. C. Solution properties of single-walled carbon nanotubes, Science, 1998, V. 282, p. 95-98.
[13] Liu J. Rinzler, A. G. Dai, H. Hafner, J. H. Bradly, R. K. Boul, P. J. Fullerene pipes, Science, 1998, V. 280, p. 1253-6.
[14] Martinez M. T. Callejas, M A. Benito, A. M. Cochet, M. Seeger, T. Anson, A. Sensitivity of single-wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalization, Carbon, 2003, V. 41, p. 2247-2256.
[15] Zhang J. Zou, H. L. Qing, Q. Yang, Y. Li, Q. Liu, Z. Effect of chemical oxidation on the structure of single-walled carbon nanotubes, J Phys Chem B, 2003, V. 107, p. 3712-3718.
[16] Rosca I. D. Watari, F. Uo, M. Akasaka, T. Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 2005, V. 43, p. 3124-3131.
[17] Grujicic M. Gao, G. Rao, A. M. Tritt, T. M. Nayak, S. UV-light enhanced oxidation of carbon nanotubes, Appl Surf Sci., 2003, V. 214, p. 289-303.
[18] Savage T. Bhattacharya, S. Sadanadan, B. Gaillard, J. Tritt, T. M. Sun, Y. P. Photoinduced oxidation of carbon nanotubes, J. Phys. Conden. Mat., 2003, V. 15, p. 5915-5921.
[19] Felten A. Bittencourt, C. Pireaux, J. J. Gold clusters on oxygen plasma functionalized carbon nanotubes: XPS and TEM studies, Nanotechnology, 2006, V. 17, p 1954-1959.
[20] Wang Y. Duan, Y. Yang, L. Zhao, C. Shen, X. Zhang, M. Zhuo, Y. Chen, C. Experimental study on mercury transformation and removal in coal-fired boiler flue gasses, Fuel Processing Technology, 2009, V. 90, p. 643-651.
[21] Uchechukwu C. Naga, W. S. Dong, S. C. Z. Meyyappan, M. Iyuke, S. E. Dimensional Analysis of Acid Etching Effects on Vertically Grown Carbon Nanofibers Using Atomic Force Microscopy, Nanomaterials and Nanotechnology, 2013, p. 91-98.
[22] Slobodian P. Riha, P. Olejnik, R. Cvelbar, U. Saha, P. Enhancing effect of KMnO4 oxidation of carbon nanotubes network embedded in elastic polyurethane on overall electro-mechanical properties of composite, Science and Technology. 2013, V. 81, p. 54-60.
[23] Taleshi F. Hosseini, A. A. Synthesis of uniform MgO/CNT nanorods by precipitation method, Journal of Nanostructure in Chemistry, 2012, V. 3, p. 4-5.
[24] Stobinskia L. Lesiaka, B. Kövér, L. Tóth, J. Biniak, S. Trykowski, G. Judek, J. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods, Journal of Alloys and Compounds, 2010, V. 501, p. 77-84.
[25] Ciobotaru C. C. Damian, C. M. Iovu, H. Single-Wall Carbon Nanotubes Purification and Oxidation, U.P.B. Sci. Bull., Series B. 2013, V. 75, №2, p. 56-66.
[26] Yudianti R. Onggo, H. Saito, Y. Iwata, T. Azuma, J. Analysis of Functional Group Sited on Multi-Wall Carbon Nanotube Surface, The Open Materials Science Journal, 2011, V. 5, p. 242-247.
[27] Edwards E. Antunes, E. Botelho, E. Baldan, M. Corat, E. Evaluation of residual iron in carbon nanotubes purified by acid treatments, Applied Surface Sciences, 2011, V. 258, p. 641-8.
[28] Datsyuk V, Kalyva, M. Papagelis, K. Parthenios, J. Tasis, D. Siokou, A. Chemical oxidation of multiwalled carbon nanotubes, Carbon, 2008, V. 46, p 833-840.
[29] Aviles F. Cauich-Rodrıguez, J. V. Moo-Tah, L. May-Pat, A. Vargas-Coronado, R. Evaluation of mild acid oxidation treatments for MWCNT functionalization, Carbon, 2009, V. 47, p. 2970-2975.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.