Journal of Nanoscience and Nanoengineering
Articles Information
Journal of Nanoscience and Nanoengineering, Vol.1, No.1, Jun. 2015, Pub. Date: Jun. 13, 2015
Nano Reactive Polymer as Asphalt Modifier for Anticorrosion Application
Pages: 9-17 Views: 5551 Downloads: 1628
Authors
[01] Elsayed M. Elnaggar, Faculty of Science, Chemistry Department, Al-Azhar University, Cairo, Egypt.
[02] Hazem S. Elsherif, Polymer Department, National Research Centre, Cairo, Egypt.
[03] Mohamed A. Migahed, Petroleum Application Department, Egyptian Petroleum Research Institute, Cairo, Egypt.
[04] Amina M. M. Saleh, Petroleum Application Department, Egyptian Petroleum Research Institute, Cairo, Egypt.
Abstract
Recently, the application of nanotechnology in the corrosion protection of metals has gained momentum. On the other hand, polymers are used as corrosion inhibitor coatings that are physically, chemically or electrochemically deposited on the metal substrate. Although asphalt has low cost, high cohesive nature, rheological properties and high thermal resistance but it is not practically used on a large scale in anticorrosion applications. So, the aim of this research is to use the nanotechnology science in preparing modified asphaltic materials to produce new and more qualified anti-corrosive coatings. To achieve this aim, nanoparticles of polyaniline (PANI-H2SO4) using template free polymerization method are prepared and characterized by FTIR, XRD and SEM. Another nonreactive polymer of type low density poly ethylene (LDPE) has been used for comparison purpose. The two types of modifiers have mixed with asphalt of type 85/25 in different percentages as 2, 4, 6, 8& 10%by the weight of the virgin bitumen. The modified asphalt samples have physically tested and the morphology by SEM has conducted. The ability of modified bitumen samples to serve as corrosion protective coatings for carbon steel has examined by open circuit potential-time (Eocp-time), and potentiodynamic polarization in 0.5 M HCl solution. The results revealed that all the prepared samples show a good behavior as anticorrosive materials and bitumen modified by PANI-H2SO4 is the most qualified material as it had protection efficiency of 99.996 % with respect to uncoated CS while the protection efficiency of PMA/LDPE is 99.98 %.
Keywords
Nanopolymer, Polyaniline, Polymer Modified Asphalt, Anticorrosive Coating
References
[01] M.G. Morales, P. Partal, F.J. Navarro, M. Boza, C. Gallegos, Polym. Eng. Sci. 47 (2007) 181–91.
[02] P. Claudy, J.M. Letoffe, G.N. King, B. Brule, J.P. Planche, FUEL SCI. TECHN. INT. 9 (1991) 71.
[03] J. Stastna, L. Zanzotto, O.J. Vacin, J. Colloid Interf. Sci. 259 (2003) 200–207.
[04] D. Lesueur, J.F. Gerard, P. Claudy, J.M. Le´ toffe´, J.P. Planche, D. Martin, J. of Rheol. 40 (1996) 813.
[05] H. Tarannum, B. Singh, M. Gupta, J. Appl. Polym. Sci. 90 (2003) 1365.
[06] A. Ait-Kadi, H. Brahimi, M. Bousmina, Polym. Eng. Sci. 36 (1996) 1724.
[07] A.H. Fawcett, S.K. Lor, Polymer 33 (1992) 2003–2006.
[08] J.K.Newman, J. Elastom. Plast. 30 (1998) 245–263.
[09] A. Ait-Kadi, B. Brahimi, M. Bousmina, Polym. Eng. Sci. 36 (1996) 1724–1733.
[10] R. Blanco, R. Rodriguez, M. García-Garduño, V. M. Castan˜o, J. Appl. Polym. Sci., 61 (1996) 1493–1501.
[11] S. A. Hesp, R. T. Woodhams, Colloid. Polym. Sci. 269 (1991) 825–34.
[12] A. A. Yousefi, J. Appl. Polym. Sci. 90 (2003) 3183–3190.
[13] A. Pérez-Lepe, F. J. Martínez-Boza, P. Attane´, C. Gallegos, J. Appl. Polym. Sci.100 (2006) 260–267.
[14] H. Tarannum, B. Singh, M. Gupta, J. Appl. Polym. Sci. 90 (2003) 1365-1377.
[15] F.J. Navarro, P. Partal, F. Martı´nez-Boza, C. Gallegos, J. Appl. Polym. Sci. 104 (2007) 1683-1691.
[16] G. Polacco, J. Stastna, D. Biondi, F. Antonelli, Z. Vlachovicova, L. Zanzotto, J. Colloid Interf. Sci. 280 (2004) 366-373.
[17] G. Polacco, J. Stastna, Z. Vlachovicova, D. Biondi, L. Zanzotto, Polym. Eng. Sci. 44 (2004) 2185-2193.
[18] V. Sekar, V. Selvavathi, V. Sriram, B. Sairam, J. Petrol. Technol. 20 (2002) 535-547.
[19] B. Singh, H. Tarannum, M. Gupta, Constr. Build. Mater. 18 (2004) 591-601.
[20] H. J. Qiu, M. X. Wan, B. Matthews, L. M. Dai, Macromolecules 34 (2001) 675–677.
[21] J. Liu, M. X. Wan, Synthesis, J. Mater. Chem. 11 (2001) 404–407.
[22] Y. Z. Long, Z. J. Chen, P. Zheng, N. L. Wang, Z. M. Zhang, M. X. Wan, J. Appl. Phys. 93 (2003) 2962–2965.
[23] Z. X. Wei, M. X. Wan, J. Appl. Polym. Sci. 87 (2003) 1297–1301.
[24] A. Topal, Fuel Process. Technol. 91(2010)1, 45–51.
[25] B. Brule, Y. Brion, B. Tanguy, J. Assoc. of Asphalt Pav. 57 (1988) 41–64.
[26] M. G. Han, S. K. Cho, S. S. Im, Synthetic Met. 126 (2002) 53-60.
[27] V. Sridevi, S. Malathi, C. S. Devi, J. Chem. Sci., 2011(2011) CSJ-26.
[28] A. Olad, A. Rashidzadeh, J. Chem. Eng. 5 (2008) 2.
[29] H. Liu, X. B. Hu, J. Y. Wang, R. I. Boughton, Macromolecules, 35 (2002) 9414-9419.
[30] B. G.Soares, M. E. Leyva, G. M. O. Barra, D. Khastgir, Eur. Polym. J. 42 (2006) 676-686.
[31] S. Haddadi, E. Gharbel, N. Laradi, Constr. Build. Mater. 22 (2008) 1212–1219.
[32] B. Sengoz, G. Isikyakar, J. of Hazard. Mater. 150 (2008) 424–432.
[33] X. Lu, U. Isacsson, J. Test. Eval. 25 (1997) 383–390.
[34] E. Hur, G. Bereket, Y. Sahin, Curr. Appl. Phys., 7 (2007) 597–604.
[35] M. Stern, A. L. Geary, J. Elec. Soc. (1957) 104:56.
[36] J. Bockris, K. N. Reddy, Modern Electrochemistry, Plenum, New York, 1973.
[37] S. Sathiyanarayanan, S. Muthukrishnan, G. Venkatachari, D. C. Trivedi, Prog. Org. Coat. 53 (2005) 297–301.
[38] H. Bhandari, R. Srivastav, V. Choudhary, S.K. Dhawan, Thin Solid Films, 519 (2010) 1031–1039.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.