International Journal of Modern Physics and Applications
Articles Information
International Journal of Modern Physics and Applications, Vol.2, No.1, Jan. 2016, Pub. Date: Mar. 4, 2016
Beat Signal Generation between Two Rubidium Absorption-Line-Stabilized Diode Lasers in GHz-Frequency Band
Pages: 1-6 Views: 842 Downloads: 504
[01] Tomoyuki Uehara, Department of Communications Engineering, National Defense Academy of Japan, Yokosuka, Japan.
[02] Shinya Maehara, Faculty of Engineering, Niigata University, Niigata, Japan.
[03] Kohei Doi, Faculty of Science, University of Toyama, Toyama, Japan.
[04] Toshiya Nimonji, YMP-Mundus Corporation, Osaka, Japan.
[05] Takahiro Saito, Graduate School of Science and Technology, Niigata University, Niigata, Japan.
[06] Hideaki Arai, Graduate School of Science and Technology, Niigata University, Niigata, Japan.
[07] Takashi Sato, Faculty of Engineering, Niigata University, Niigata, Japan.
[08] Yasuo Ohdaira, Faculty of Engineering, Niigata University, Niigata, Japan.
[09] Shuichi Sakamoto, Faculty of Engineering, Niigata University, Niigata, Japan.
[10] Masashi Ohkawa, Faculty of Engineering, Niigata University, Niigata, Japan.
A stable microwave source using frequency stabilized diode lasers was developed. The Doppler-free spectra of Rb atoms produced by saturated absorption spectroscopy were used to obtain highly-sensitive control signals and lock the frequency of diode lasers to it. The beat frequencies between two independently stabilized diode lasers were 1.2 GHz and 2.9 GHz. The fluctuations in beat frequencies were 40 kHz and 400 kHz respectively in the best stability.
Frequency Stabilization, Diode Laser, Saturated Absorption Spectroscopy, Rubidium Absorption Line, Microwave
[01] S. Maehara, K. Kawakami, H. Arai, K. Nakano, K. Doi, T. Sato, Y. Ohdaira, S. Sakamoto, and M. Ohkawa, “Frequency noise characteristics of a diode laser and its application to physical random number generation,” Optical Engineering, vol. 52, no.1, p.014302, Jan. 2013.
[02] W. Liang, V.S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering–gallery–mode–resonator -based ultra narrow linewidth external-cavity semiconductor laser,” Optics Letter, vol. 35, no. 16, pp. 2822–2824, 2010.
[03] G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photonics, vol.7, no.2, pp.118–122, Feb. 2013.
[04] T. Yabuzaki, A. Ibaragi, H. Hori, M. Kitano, and T. Ogawa, “Frequency-Locking of a GaAlAs Laser to a Doppler-Free Spectrum of the Cs-D 2 Line,” Japanese Journal of Applied Physics, vol.20, no.6, p.L451, 1981.
[05] H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramochi, and N. Oura, “Frequency Stabilization of AlGaAs Semiconductor Laser Based on the 85 Rb-D 2 Line,” Japanese Journal of Applied Physics, vol. 21, no. 9A, p. L561, 1982.
[06] H. Hori, Y. Kitayama, M. Kitano, T. Yabuzaki, and T. Ogawa, “Frequency stabilization of GaAlAs laser using a Doppler-free spectrum of the Cs-D2line,” Quantum Electronics, IEEE Journal of, vol. 19, no. 2, pp. 169–175, 1983.
[07] T. Sato, S. Sato, and M. Shimba, “Frequency stabilisation of a semiconductor laser using rb-d1 and d2 absorption lines,” Electronics Letters, vol. 24, no. 7, pp. 429–431, 1988.
[08] U. Tanaka and T. Yabuzaki, “Frequency Stabilization of Diode Laser Using External Cavity and Doppler-Free Atomic Spectra,” Japanese Journal of Applied Physics, vol.33, no.3S, p. 1614, 1994.
[09] H. Talvitie, M. Merimaa, and E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633 nm,” Optics Communications, vol. 152, no. 1-3, pp. 182–188, June 1998.
[10] T. Nimonji, S. Ito, A. Sawamura, T. Sato, M. Ohkawa, and T. Maruyama, “New Frequency Stabilization Method of a Semiconductor Laser Using the Faraday Effect of the Rb-D 2 Absorption Line,” Japanese Journal of Applied Physics, vol.43, no.5A, pp. 2504– 2509, May 2004.
[11] C. Affolderbach and G. Mileti, “Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references,” Optics and Lasers in Engineering, vol. 43, no. 3-5, pp. 291–302, 2005.
[12] A. Hemmerich, D. H. McIntyre, D. Schropp, D. Meschede, and T.W. Ha¨nsch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Optics Communications, vol. 75, no. 2, pp. 118–122, 1990.
[13] L. Ricci, M. Weidemu¨ller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Ko¨nig, and T. Ha¨nsch, “A compact grating- stabilized diode laser system for atomic physics,” 1995.
[14] T. Uehara, A. Sato, S. Maehara, T. Nimonji, T. Sato, M. Ohkawa, T. Maruyama, and S. Kawamura, “Comparison of three semiconductor laser systems for gravitational wave detection,” Optical Engineering, vol. 48, no. 3, p. 034302, March 2009.
[15] C. Ku¨bler, R. Huber, S. Tu¨bel, and A. Leitenstorfer, “Ultrabroadband detection of multi-terahertz field transients with GaSe electro- optic sensors: Approaching the near infrared,” Applied Physics Letters, vol. 85, no. 16, 2004.
[16] I. Katayama, R. Akai, M. Bito, H. Shimosato, K. Miyamoto, H. Ito, and M. Ashida, “Ultrabroadband terahertz generation using 4-N,N- dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals,” Applied Physics Letters, vol.97, no. 2, pp.–, 2010.
[17] K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz‐wave generation from LiNbO3 with monolithic grating coupler,” Applied Physics Letters, vol. 68, no. 18, 1996.
[18] T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Applied Physics Letters, vol.83, no. 2, p.237, 2003.
[19] S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature,” Applied Physics Letters, vol. 97, no. 24, p. 242102, 2010.
[20] M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz,” Applied Physics Letters, vol. 99, no. 23, p. 233506, 2011.
[21] R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature, vol. 417, no. 6885, pp. 156–159, May 2002.
[22] E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low temperature grown GaAs,” Applied Physics Letters, vol. 66, no. 3, 1995.
[23] A. Akatsuki and Y. Muramoto, “Development of Terahertz-wave Photomixer Module Using a Unitraveling-carrier Photodiode,” NTT Technical Review, 2012.
[24] A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-Wave Sub-THz Photonic Generation With Ultra-Narrow Linewidth, Ultra-High Resolution, Full Frequency Range Coverage and High Long-Term Frequency Stability,” Terahertz Science and Technology, IEEE Trans- actions on, vol. 3, no. 4, pp.461–471, 2013.
[25] T. Uehara, K. Hagiwara, T. Tanigaki, K. Tsuji, and N. Onodera, “Frequency stabilization of two orthogonally polarized external cavity laser diodes using a novel γ-type optical configuration consist of a phase modulator and a faraday rotator mirror,” IEICE Electronics Express, vol. 11, no. 10, pp. 20140169–20140169, 2014.
[26] Y. Minamisawa, T. Nimonji, K. Nakano, T. Sato, and M. Ohkawa, “THz wave generation using frequency stabilized laser diodes,” Proc. SPIE, vol. 8255, p. 82551L, Feb. 2012.
[27] S. Nakayama, “Theoretical Analysis of Rb and Cs D 2 Lines in Saturation Spectroscopy with Optical Pumping,” Japanese Journal of Applied Physics, vol.23, no.7R, p.879, 1984.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - 2017 American Institute of Science except certain content provided by third parties.