Physics Journal
Articles Information
Physics Journal, Vol.2, No.2, Mar. 2016, Pub. Date: Jan. 12, 2016
Generation of Static Perfect Fluid Spheres in General Relativity
Pages: 61-66 Views: 953 Downloads: 673
Authors
[01] M. A. Kauser, Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong, Bangladesh.
[02] Q. Islam, Jamal Nazrul Islam Research Center for Mathematical and Physical Sciences, University of Chittagong, Chittagong, Bangladesh.
Abstract
In this paper a new technique of finding static spherically symmetric perfect fluid solutions is presented. This amounts to solving two first order differential equations, one for each of the two metric functions, coupled by a single generating function. The technique can be applied to generate new solutions from previously known solutions. Using the technique a new physically acceptable solution is generated.
Keywords
Isotropy, Anisotropy, Metric Functions, Space-time, Perfect Fluid, Central Pressure, Central Density
References
[01] P. Boonserm, M. Visser and S. Weinfurtner, ‘Generating perfect fluid spheres in general relativity’, Phys. Rev. D 71, 124037(2005).
[02] D. Martin and M. Visser, ‘Algorithmic construction of static perfect fluid spheres’, Phys. Rev. D 69, 104028(2004).
[03] K. Schwarzschild, ‘On the gravitational field of a mass point according to Einstein’s theory’ Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl, 189(1916).
[04] R. J. Adler, ‘A fluid sphere in general relativity’ J. Math. Phys. Vol. 15, No. 6,727(1974).
[05] R. C. Tolman, ‘Static solutions of Einstein’s field equations for spheres of fluid’, Phys. Rev. 55, 364(1939).
[06] K. Lake, ‘All static spherically symmetric perfect fluid solutions of Einstein’s equations’, Phys. Rev. D 67, 104015(2003).
[07] L. Herrera, J. Ospino and A. Di Prisco, ‘All static spherically symmetric anisotropic solutions of Einstein’s equations’, Phys. Rev. D 77, 027502(2008).
[08] K. Lake, ‘Generating static spherically symmetric anisotropic solutions of Einstein’s equations from isotropic Newtonian solutions’, Phys. Rev. D 80, 064039(2009).
[09] M. A. Kauser, Q. Islam and M. I. Miah, ‘On the equilibrium of static fluid spheres in general relativity’, Romanian Journal of Physics, Vol. 58 No. 3-4,260(2013).
[10] K. A. Bronnikov, ‘Static fluid cylinders and plane layers in general relativity’, J. Phys. A: Math. Gen. Vol. 12 No. 2, 201(1979).
[11] M. Sharif, ‘Cylindrically symmetric, static, perfect-fluid solutions of Einstein's field equations’, J. of the Kor. Physical Soc., Vol. 37 No. 5, 624(2000).
[12] H. A. Buchdahl, ‘General relativistic fluid spheres’ Phys. Rev. Vol. 116 No. 4,1027(1959).
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.