Physics Journal
Articles Information
Physics Journal, Vol.1, No.2, Sep. 2015, Pub. Date: Sep. 2, 2015
The Study of Microstructure and Creep Properties of Cu-Doped Sn-4wt%Ag and Sn-9wt%Zn Lead Free Solders with Annealing Temperature
Pages: 163-171 Views: 2483 Downloads: 935
Authors
[01] A. Yassin, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
[02] E. Gomaa, Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.
Abstract
The creep tests were conducted to investigate the effect of the heat treatments on the mechanical properties of Sn-4wt%Ag, Sn-4wt%Ag-0.5wt%Cu, Sn-9wt%Zn and Sn-9wt%Zn-0.5wt%Cu lead free solders. Samples were heat treated at temperatures of 373, 423 and 448 K to produce a range of different grain sizes. Constant-load creep tests were carried out at room temperature for each of the wire samples to all alloys. The results obtained show that there is a relationship between the heat-treatment temperature Ta and the microstructure and that this, in turn, affects the creep properties of the alloys. From the steady state creep rate the stress exponent is described in terms of the heat treatment temperatures. Comparisons are made with all alloys on the creep resistance of solder alternatives. The activation energy for all alloys are calculated at constant applied stress (σ = 9.75MPa). Furthermore, positron annihilation lifetime spectroscopy (PALS) has been applied to measure the variation of positron lifetime parameters for the above mentioned samples. The PAL results showed that value of 342 ps in Sn-9wt%Zn sample corresponding to a vacancy mean size of ~ 3 Ǻ. However, the values of positron annihilation lifetime of Sn-4wt%Ag alloy is shorter than its corresponding value of Sn-9wt%Zn alloy due to the dispersed Ag3Sn within the matrix which leads to a decrease in positron lifetime.
Keywords
Heat Treatments, Mechanical Properties, Microstructure, Activation Energy, Positron Annihilation
References
[01] Y. Min, L. Xiuzhong, L. Xinghong, D. Jiahui, Conference Proceedings of 11 th International Conference ICEPT-HDP (2010) 784-788.
[02] M. M. EL-Bahay, M. E. L. Mossalamy, M. Mahdy, A. A Bahgat, J. Mater. Sci .Mater. Electron. 15 (2004) 519–526.
[03] M. M. EL-Bahay, E. L. M. Mossalamy, M. Mahdy, A. A. Bahgat, Phys. Status Solidi A 198 (2003) 76–90.
[04] T. J. Chen, W. Wang, D. H. Zhang, Yongkum Ma, Yuzhou Hao, J. Alloys and Compounds, 546 (2012) 28 - 40.
[05] G. S. Al-Ganainy, M.T. Mostafa, Egypt. J. Sol. 23 (2000) 2.
[06] H. R. Bakhsheshi-Rad, E. Hamzah, M. Medraj, M. H. Idris, A. F. Lotfabadi, M. Daroonparvar and M. A. M. Yajid, Materials and Corrosion (2014), DOI:10.1002/maco.201307492.
[07] S. B. Youssef, A. Fawzy, M. Sobhy, G. Saad, Acta Phys. Slov. 43 (1993) 431.
[08] B. Vilarinho, D. Soares, F. Castro, J. Alloys and Compound, 379 (2004) 161.
[09] C. M. Miller, I.E. Anderson and J.F. Smith, J. Electron. Mater. 23 (1994) 595.
[10] M. L. Huang and L. Wang, Metall. Mater. Trans. A 36 (2005) 1439.
[11] K. Mather, R. Patel, D. Raw, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, E. J. Cotts, J. Electron. Mater. 33 (2004) 1429.
[12] S. K. Kang, W. K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K. J. Puttlitz, JOM 55 (2003) 61.
[13] K. S. Kim, S. H. Huh, K. Suganuma, Microelectron. Reliab. 43 (2003) 259.
[14] A. K. Gain, T. Fouzder, Y. C. Chan, A. Sharif, N. B. Wong. W. K. C. Yung, J. Alloys and Compd. 506 (2010) 216.
[15] M. Hammam, F. S. Allah, El Said Gouda, Y. El Gendy, H. Abdel Aziz, J. Eng. 2 (2010) 172-178.
[16] L. H. Su, C. Lua, L. Z. He, L. C. Zhang, P. Guagliardo, A. K. Tieu, S. N. Samarin, J. F. Williams , H. J. Li, Acta Materialia, 60 (2012) 4218.
[17] A. M. Samy, N. Mostafa, E. Gomaa, Appl. Surface Sci., 252 (2006) 3323.
[18] M. Misheva, N. Djourelov, FMA Margaca, IM. Miranda Salvado, J. Non-Cryst .Solids, 272 (2000) 209.
[19] J. Kancy, Methods Phys. Res, 374 (1996) 235.
[20] P P. Hautojarvi, C. Corbel, A. Dupasquier, A. P. Mills, Positron spectroscopy of solids, Jr (Eds), IOS Press, Amsterdam, 1995.
[21] A. A. El-Daly, A. E. Hammad, A. Fawzy and D. A. Nasrallh, Materials and Design 43 (2013) 40-49.
[22] A. A. El-Daly, A. Z. Mohamad, A. Fawzy, A. M. El-Taher, Mater. Sci. Eng. A 528 (2011) 1055-1062.
[23] K. Linga Murty, F. A.Mohamed, J. E. Dorn, Acta Met. 20 (1972) 1009.
[24] M. M. El-Bahay, M. E. El Mossalamy, M.Mahdy, A. A. Bahgat, J. Mater. Sci. 15 (2004) 519-526.
[25] E. E. Underwood. ""Quantitative Stereology"", Adison-Wesley, California, 1970.
[26] R. W. K. Honeycombe, The Plastic Deformation of Metals, Edward Arnold, (1984) 369.
[27] Geranmayeh A R, Nayyeri G. Mahmudi R, Mater Sci Eng A 547 (2012) 110.
[28] A. Hammad E, Mater. Desig. 52 (2013) 663-670.
[29] Y. Dong, L. Xiong, C. W. Lung, J Phys Condens. Matter. 3 (1991) 3155.
[30] A. M. Samy, E. Gomaa, N. Mostafa, The Open Ceramic Sci J 1 (2010) 1-4.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.